Theoretical Foundations of Logic Programming

Mirosław Truszczyński

Department of Computer Science University of Kentucky

July 24-27, 2008

Language

- Constant, variable, function and predicate symbols
- Terms: strings built recursively from constant, variable and function symbols
- c, X, f(c, X), f(f(c, X), f(X, f(X, c)))
- Atoms: built of predicate symbols and terms
- ▶ *p*(*X*, *c*, *f*(*a*, *Y*))

Horn logic programming

Horn clause

- ▶ $p \leftarrow q_1, \ldots, q_k$
 - where p, q_i are atoms
- Clauses are universally quantified
 - special sentences
- Intuitive reading: if q_1, \ldots, q_k then p

Horn program

A collection of Horn clauses

Horn logic programming

Horn clause

- ▶ $p \leftarrow q_1, \ldots, q_k$
 - where p, q_i are atoms
- Clauses are universally quantified
 - special sentences
- Intuitive reading: if q_1, \ldots, q_k then p

Horn program

A collection of Horn clauses

Herbrand model

- Ground terms: no variable symbols
- Herbrand universe: collection of all ground terms
- Ground atoms: atoms built of predicate symbols and ground terms
- ▶ *p*(*a*, *c*, *f*(*a*, *a*))
- Herbrand base: collection of all ground atoms
- Herbrand model: subset of an Herbrand base

Horn logic programming

Semantics

- Given by Herbrand models
 - ▶ grnd(P): the set of all ground instances of clauses in P
 - Thus, no difference between P and grnd(P)
- Key question:

which ground facts hold in every Herbrand model of P?

Sufficient to restrict to Herbrand models contained in HB(P)

- Herbrand universe of P, HU(P) (if no constant symbols in P, a single constant symbol introduced)
- Herbrand base of P, HB(P)
- ► Ground atoms not in *HB*(*P*) are not true in all Herbrand models

Least Herbrand model

- Every Horn program P has a least Herbrand model LM(P)
 - the intersection of a set of Herbrand models of a Horn program is a Herbrand model of the program
 - HB(P) is an Herbrand model of P
 - the intersection of all models is a least Herbrand model (and it is contained in HB(P))
- Single intended Herbrand model
- For a ground *t*, $P \models p(t)$ if and only if $p(t) \in LM(P)$
- For ground *t*, if $P \not\models p(t)$, defeasibly conclude $\neg p(t)$
- Closed World Assumption (CWA)

What do they specify, what can they express?

A Horn program P specifies a subset X of the Herbrand universe for P, HU(P), if for some predicate symbol p occurring in P we have:

$$X = \{t \in HU(P) \colon p(t) \in LM(P)\}$$

 Finite Horn programs specify precisely the r.e. sets and relations Smullyan, 1968, Andreka and Nemeti, 1978 Program P

arc(a, b). arc(b, c). arc(d, c).

```
reach(X, X).
reach(X, Y) \leftarrow arc(X, Z), reach(Z, Y).
```

HU(P), HB(P), ground(P)

- $\blacktriangleright HU(P) = \{a, b, c, d\}$
- ► HB(P) = {arc(a, a), arc(a, b), ..., reach(a, a), ...}
- ▶ ground(P):

arc(a, b). arc(b, c). arc(d, c). reach(a, a). reach(b, b). reach(c, c). reach(d, d). $reach(a, a). \leftarrow arc(a, a), reach(a, a).$ $reach(a, b). \leftarrow arc(a, b), reach(b, a).$

```
\textit{reach}(c, b). \leftarrow \textit{arc}(c, d), \textit{reach}(d, b).
```

. . .

Least model

- arc(a, b), arc(a, c), arc(d, c)
- reach(a, a), reach(b, b), reach(c, c), reach(d, d)
- reach(a, b), reach(a, c), reach(d, c), reach(a, c)

What's computed?

Assume *reach* is the distinguished "solution" predicate
 {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (d, c), (a, c)}

Least model

- arc(a, b), arc(a, c), arc(d, c)
- reach(a, a), reach(b, b), reach(c, c), reach(d, d)
- reach(a, b), reach(a, c), reach(d, c), reach(a, c)

What's computed?

- Assume reach is the distinguished "solution" predicate
- ▶ $\{(a,a), (b,b), (c,c), (d,d), (a,b), (a,c), (d,c), (a,c)\}$

Computing with Horn programs

Possible issues?

- Function symbols necessary!
- ▶ List constructor [·|·] used to define higher-order objects
- Terms basic data structures
- Queries (goals):
 - p(t) is p(t) entailed?
 - p(X) for what ground *t*, is p(t) entailed?
- Proofs provide answers
- SLD-resolution
- Unification basic mechanism to manipulate data structures
- Extensive use of recursion
- Leads to Prolog

Manipulating lists: append and reverse

$$append([], X, X).$$

 $append([X|Y], Z, [X|T]) \leftarrow append(Y, Z, T).$

$$reverse([],[]).$$

 $reverse([X|Y],Z) \leftarrow append(U,[X],Z), reverse(Y,U).$

both relations defined recursively

terms represent complex objects: lists, sets, ...

Playing with reverse

- Problem: reverse list [a, b, c]
 - Ask query ? reverse([a, b, c], X).
 - ► A proof of the query yields a substitution: *X* = [*c*, *b*, *a*]
 - The substitution constitutes an answer
- Query ? reverse([a|X], [b, c, d, a]) returns X = [d, c, b]
- Query ? reverse([a|X], [b, c, d, b]) returns no substitutions (there is no answer)

Example, cont'd

Observations

- Techniques to search for proofs the key
- Understanding of the resolution mechanism is important
- It may make a difference which logically equivalent form is used:
 - $reverse([X|Y], Z) \leftarrow append(U, [X], Z), reverse(Y, U).$
 - ▶ reverse([X|Y], Z) ← reverse(Y, U), append(U, [X], Z).
 - termination vs. non-termination for query:
 - ? reverse([a|X], [b, c, d, b])
- Is it truly knowledge representation?
 - is it truly declarative?
 - implementations are not!
- Nonmonotonicity quite restricted

Why negation?

- Natural linguistic concept
- Facilitates knowledge representation (declarative descriptions and definitions
- Needed for modeling convenience
- Clauses of the form:

$$p(\vec{X}) \leftarrow q_1(\vec{X_1}), \dots, q_k(\vec{X_k}), \textit{not } r_1(\vec{Y_1}), \dots, \textit{not } r_l(\vec{Y_l})$$

Things get more complex!

Observations

- Still Herbrand models
- ► Still restricted to *HB*(*P*)
- But usually no least Herbrand model!
- Program

 $a \leftarrow not b$ $b \leftarrow not a$

has two minimal Herbrand models: $M_1 = \{a\}$ and $M_2 = \{b\}$.

Identifying a single intended model a major issue

Great Logic Programming Schism

- Single intended model approach
 - continue along the lines of Prolog
- Multiple intended model approach
 - branch into answer-set programming

Single intended model approach

"Better" Prolog

- Extensions of Horn logic programming
 - Perfect semantics of stratified programs
 - 3-val well-founded semantics for (arbitrary) programs
- Top-down computing based on unification and resolution
- XSB David Warren at SUNY Stony Brook
- Will come back to it

Answer-set programming

- Semantics assigns to a program not one but many intended models!
 - for instance, all stable or supported models (to be introduced soon)
- How to interpret these semantics?
 - skeptical reasoning: a ground atom is cautiously entailed if it belongs to all intended models
 - intended models represent different possible states of the world, belief sets, solutions to a problem
- Nonmonotonicity shows itself in an essential way
 - as in default logic

Preliminary observations and comments

- Logic programs with negation
- Still interested only in Herbrand models
- Thus, enough to consider propositional case
- Supported model semantics
- Stable model semantics
- Connection to propositional logic (Clark's completion, tightness, loop formulas)
- Kripke-Kleene and well-founded semantics
- Strong and uniform equivalence

Normal logic programming — propositional case

Syntax

Propositional language over a set of atoms At (possibly infinite)

Clause r

$$a \leftarrow b_1, \ldots, b_m, not c_1, \ldots, not c_n$$

- ▶ a, b_i, c_j are atoms
- *a* is the head of the clause: hd(r)
- literals b_i , not c_j form the body of the rule: bd(r)
- $\{b_1, \ldots, b_m\}$ positive body $bd^+(r)$
- $\{c_1, \ldots, c_n\}$ negative body $bd^-(r)$

One-step provability operator

Basic tool in LP

van Emden, Kowalski 1976

- Operator on interpretations (sets of atoms)
- $T_P(I) = \{hd(r) \colon I \models bd(r)\}$
- ▶ If *P* is Horn, *T_P* is monotone
 - Let $I \subseteq J$
 - Let $bd(r) = b_1, \ldots, b_m$ (no negation!)
 - If $I \models bd(r)$ than $J \models bd(r)$
 - Thus, $T_P(I) \subseteq T_P(J)$
 - Least fixpoint of T_P exists and coincides with the least Herbrand model of P
- In general, not the case (due to negation)
 - ▶ Ø ⊨ not a
 - but {a} ⊭ not a

Definition and some observations

- $M \subseteq At$ is a supported model of P if $T_P(M) = M$
- Supported models are indeed models
 - let $M \models bd(r)$
 - then $hd(r) \in T_P(M)$
 - and so, $hd(r) \in M$
- Supported models are subsets of At(P) (the Herbrand base of P)
- Thus, they are Herbrand models

Program $p \leftarrow not q$

- One supported model: $M_1 = \{p\}$
- $M_2 = \{q\}$ not supported (but model)
- p "follows"
- ▶ If q included in the program (more exactly: a rule $q \leftarrow$)
 - Just one supported model: $M_1 = \{q\}$.
 - p does not 'follow"
 - nonmonotonicity

Program $p \leftarrow p$

- Two supported models: $M_1 = \emptyset$ and $M_2 = \{p\}$
- The second one is self-supported (circular justification)
- A problem for KR

Rules as implications

bd[∧](r) the conjunction of all literals in the body of r with all not c replaced with ¬c

•
$$cmpl^{\leftarrow}(P) = \{ bd^{\wedge}(r) \rightarrow hd(r) \colon r \in P \}$$

Rules as definitions

- Notation: $def_P(a) = \bigvee \{ bd^{\wedge}(r) : hd(r) = a \}$
- ▶ Note: if *a* not the head of any rule in *P*, $def_P(a) = \bot$
- $cmpl^{\rightarrow}(P) = \{a \rightarrow def_P(a) \colon a \in At\}$
- $cmpl(P) = cmpl^{\leftarrow}(P) \cup cmpl^{\rightarrow}(P)$
- ▶ Note: if $a \notin At(P)$, $cmpl(P) \models \neg a$

Clark's completion

Example

- $a \leftarrow b, not c$ $a \leftarrow d$
- b ← a

•
$$def(a) = (b \land \neg c) \lor d$$

- ▶ def(b) = a
- $def(c) = \bot$
- $\blacktriangleright \textit{ cmpl}^{\leftarrow} = \{b \land \neg c \to a; \ d \to a; \ a \to b\} = \{(b \land \neg c) \lor d \to a; \ a \to b\}$
- ▶ $cmpl^{\leftarrow} = \{def(a) \rightarrow a; def(b) \rightarrow b; def(c) \rightarrow c\}$
- ▶ $cmpl^{\rightarrow} = \{a \rightarrow def(a); b \rightarrow def(b); c \rightarrow def(c)\}$
- $cmpl = \{a \leftrightarrow def(a); b \leftrightarrow def(b); c \leftrightarrow def(c)\}\}$
- ► cmpl has two models: Ø and {a, b}

Connection to supported models

- A set M ⊆ At is a supported model of a program P if and only if M is a model (in a standard sense) of cmpl(P)
- Connection to SAT
- Allows us to use SAT solvers to compute supported models of P

Connection to supported models — proof

M — supported model of P: $M = T_P(M)$

▶ Let
$$a \in M \Rightarrow \exists r \in P$$
 st: $hd(r) = a$ and $M \models bd(r)$

$$\blacktriangleright \Rightarrow M \models bd^{\wedge}(r), \quad M \models def(a) \quad \text{and} \quad M \models a \leftrightarrow def(a)$$

► Let
$$a \notin M \Rightarrow \forall r \in P$$
 st: $hd(r) = a$, $M \not\models bd(r)$

$$\blacktriangleright \Rightarrow M \not\models def(a) \text{ and } M \models a \leftrightarrow def(a)$$

Conversely: let $M \models cmpl(P)$

▶
$$\Rightarrow$$
 $M \models P$ and so, $T_P(M) \subseteq M$

• Let
$$a \in M \Rightarrow M \models def(a)$$

$$\blacktriangleright \Rightarrow \exists r \in P \text{ st: } M \models bd^{\wedge}(r)$$

$\blacktriangleright \Rightarrow M \models bd(r)$ and $a \in T_P(M) \Rightarrow M \subseteq T_P(M)$

• Thus, $M = T_P(M)$ and M supported

Connection to supported models — proof

M — supported model of P: $M = T_P(M)$

▶ Let
$$a \in M \Rightarrow \exists r \in P$$
 st: $hd(r) = a$ and $M \models bd(r)$

$$\blacktriangleright \Rightarrow M \models bd^{\wedge}(r), \quad M \models def(a) \quad \text{and} \quad M \models a \leftrightarrow def(a)$$

► Let
$$a \notin M \Rightarrow \forall r \in P$$
 st: $hd(r) = a$, $M \not\models bd(r)$

$$\blacktriangleright \Rightarrow M \not\models def(a) \text{ and } M \models a \leftrightarrow def(a)$$

Conversely: let $M \models cmpl(P)$

► ⇒
$$M \models P$$
 and so, $T_P(M) \subseteq M$

• Let
$$a \in M \Rightarrow M \models def(a)$$

$$\blacktriangleright \Rightarrow \exists r \in P \text{ st: } M \models bd^{\wedge}(r)$$

$$\blacktriangleright \Rightarrow M \models bd(r) \text{ and } a \in T_P(M) \Rightarrow M \subseteq T_P(M)$$

• Thus, $M = T_P(M)$ and M supported

Supported models of interest, but ...

- Some supported models based on circular arguments
 - $q \rightarrow q$
 - {p} is supported model (circular argument)
- Some more stringent bases for selecting intended models needed

Gelfond-Lifschitz reduct

- P logic program
- M set of atoms
- Reduct P^M
 - for each $a \in M$ remove rules with *not* a in the body
 - remove literals not a from all other rules

Definition through reduct

- Reduct P^M is a Horn program
- It has the least model $LM(P^M)$
- M is a stable model of P if

$$M = LM(P^M)$$

And now through Gelfond-Lifschitz operator

- $GL_P(M) = LM(P^M)$
- M is a stable model if and only if

$$M = GL_P(M)$$

- ► GL_P is antimonotone
- For $M \subseteq N$:

 $GL_P(N) \subseteq GL_P(M)$

Stable models — examples

Multiple stable models

- $p \leftarrow q$, not s
- $r \leftarrow p, not q, not s$
- $s \leftarrow not q$
- $q \leftarrow not s$
- Two stable models: $M_1 = \{p, q\}$ and $M_2 = \{s\}$

No stable models

 $p \leftarrow not p$

No stable models!!

Stable models — examples

Multiple stable models

- $p \leftarrow q$, not s
- $r \leftarrow p, not q, not s$
- $s \leftarrow not q$
- $q \leftarrow not s$
- Two stable models: $M_1 = \{p, q\}$ and $M_2 = \{s\}$

No stable models

 $p \leftarrow not p$

No stable models!!

Stable models are models!

- Let *M* be a stable model
- M is a model of all rules that are removed from the program when forming the reduct
- ► *M* is a model of every rule that contributes to the reduct
- Indeed, each such rule is subsumed by a rule in the reduct and M satisfies all rules in the reduct

Stable models are minimal models!

• Let *N* be a stable model and *M* a model s.t. $M \subseteq N$

Then

$$N = GL_P(N) \subseteq GL_P(M) \subseteq M$$

- Thus, $N \subseteq M$ and so N = M
- ▶ The minimality of *N* follows
- Stable models form an antichain!

Lemma: If *M* model of *P*, $GL_P(M) \subseteq M$

- Since M model of P, then M is a model of P^M
- ▶ $a \leftarrow b_1, \ldots, b_m$ a rule in reduct
- ▶ $a \leftarrow b_1, \dots, b_m$, not $c_1, \dots, not c_n$ the original rule in P
- ► *M* satisfies the latter, and it satisfies every not c_i (as $c_i \notin M$)
- ▶ Thus, *M* satisfies the reduct rule

Connection to supported models

- If M is a stable model of P then it is a supported model of P
- Let M be a stable model of P
- ▶ Then *M* model of *P* and so, $T_P(M) \subseteq M$
- ► $r = a \leftarrow b_1, \dots, b_m, not c_1, \dots, not c_n$ a rule in *P* such that $M \models bd(r)$
- Then $r' = a \leftarrow b_1, \dots, b_m$ belongs to the reduct P^M
- And $M \models bd(r')$
- Since *M* is a model of P^M , $a \in M$
- Hence, $T_P(M) \subseteq M$ and so, $M = T_P(M)$
- That is, M is supported!!

But ...

The converse not true, in general (as it should not be)

Counterexample

- $q \rightarrow q \blacktriangleleft$
- > {p} is supported but not stable
- Positive dependency of p on itself is a problem

But ...

The converse not true, in general (as it should not be)

Counterexample

- ► $p \leftarrow p$
- {p} is supported but not stable
- Positive dependency of p on itself is a problem

Fages Lemma

Positive dependency graph $G^+(P)$

- Atoms of P are vertices
- (a, b) is an edge in G⁺(P) if for some r ∈ P: hd(r) = a, b ∈ bd⁺(r)

Tight programs

- *P* is tight if $G^+(P)$ is acyclic
- Alternatively, if there is a labeling of atoms with non-negative integers (a → λ(a)) s.t.
- for every rule $r \in P$

$\lambda(hd(r)) > \max{\lambda(b): b \in bd^+(r)}$

Connection to topological ordering of positive dependency graphs

Fages Lemma

Positive dependency graph $G^+(P)$

- Atoms of P are vertices
- (a, b) is an edge in G⁺(P) if for some r ∈ P: hd(r) = a, b ∈ bd⁺(r)

Tight programs

- *P* is tight if $G^+(P)$ is acyclic
- Alternatively, if there is a labeling of atoms with non-negative integers (a → λ(a)) s.t.
- for every rule $r \in P$

```
\lambda(hd(r)) > \max{\lambda(b): b \in bd^+(r)}
```

Connection to topological ordering of positive dependency graphs

The statement — finally

- If P is tight then every supported model is stable
- Intuitively, circular support not possible

Fages Lemma — example

Program P

- $p \leftarrow q$, not s
- $r \leftarrow p, not q, not s$
- $s \leftarrow not q$
- $q \leftarrow not s$

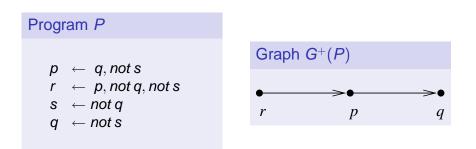
Graph $G^+(P)$

P is tight

- $\{p, q\}$ and $\{s\}$ are supported models of P
 - $T_P(\{p,q\}) = \{p,q\}$
 - $T_P(\{s\}) = \{s\}$

Thus, they are stable (which we verified directly earlier)

Fages Lemma — example

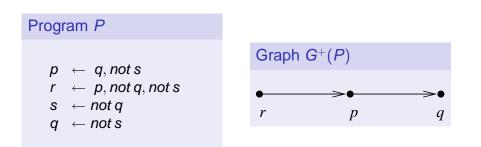


P is tight

- {p,q} and {s} are supported models of P
 - $T_P(\{p,q\}) = \{p,q\}$
 - $T_P(\{s\}) = \{s\}$

Thus, they are stable (which we verified directly earlier)

Fages Lemma — example



P is tight

- {p, q} and {s} are supported models of P
 - $T_P(\{p,q\}) = \{p,q\}$
 - $T_P({s}) = {s}$

Thus, they are stable (which we verified directly earlier)

Fages Lemma

Proof

- Let P be tight and M be its supported model
- Then *M* is a model of *P^M*
- ▶ Let *N* be a model of *P^M*
- ▶ Claim: for every *k*, if $a \in M$ and $\lambda(a) < k$, then $a \in N$
- Holds for k = 0 (trivially)
- Let $a \in M$ and $\lambda(a) = k$
- Since M supported, there is r ∈ P such that a = hd(r) and M ⊨ bd(r)
- ▶ In particular, $bd^+(r) \subseteq M$ and so, $bd^+(r) \subseteq N$ (by I.H.)
- Since $M \models bd(r)$, *M* contributes to the reduct
- Since N is a model of P^M , $a \in N$
- It follows that $M = LM(P^M)$

Relativized tightness

- Let $X \subseteq At(P)$
- P is tight on X if the program consisting of rules r such that bd⁺(r) ⊆ X is tight

Generalization

▶ If *P* is tight on *X* and *M* is a supported model of *P* such that $M \subseteq X$, then *M* is stable

Relativized tightness

- Let $X \subseteq At(P)$
- P is tight on X if the program consisting of rules r such that bd⁺(r) ⊆ X is tight

Generalization

If P is tight on X and M is a supported model of P such that M ⊆ X, then M is stable

Generalized Fages Lemma — example

Program P

- $p \leftarrow q$, not s
- $r \leftarrow p, not q, not s$
- $s \leftarrow not q$
- $q \leftarrow not s$
- $p \leftarrow r$

Graph $G^+(P)$

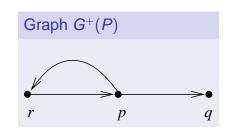
P is not tight

- {p, q} and {s} are still supported models of P
 - $T_P(\{p,q\}) = \{p,q\}$
 - $T_P(\{s\}) = \{s\}$
- Since P is tight on each of them, they are stable

Generalized Fages Lemma — example

Program P

 $p \leftarrow q, not s$ $r \leftarrow p, not q, not s$ $s \leftarrow not q$ $q \leftarrow not s$ $p \leftarrow r$



P is not tight

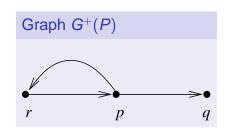
- {p, q} and {s} are still supported models of P
 - $T_P(\{p,q\}) = \{p,q\}$
 - $T_P(\{s\}) = \{s\}$

Since P is tight on each of them, they are stable

Generalized Fages Lemma — example

Program P

 $p \leftarrow q, not s$ $r \leftarrow p, not q, not s$ $s \leftarrow not q$ $q \leftarrow not s$ $p \leftarrow r$



P is not tight

- {p, q} and {s} are still supported models of P
 - $T_P(\{p,q\}) = \{p,q\}$
 - $T_P(\{s\}) = \{s\}$
- Since P is tight on each of them, they are stable

Loops and loop formulas

External support formula for $Y \subseteq At(P)$

- For a rule r:
- bd[∧](r) the conjunction of all literals in the body of r with all not c replaced with ¬c
- ► $ES_P(Y)$ the disjunction of $bd^{\wedge}(r)$ for all $r \in P$ st:
 - $hd(r) \in Y$
 - $bd^+(r) \cap Y = \emptyset$
- For finite programs: well-formed formulas
- Hence, will assume finiteness

Observations

- $ES_P(\emptyset) = \top$
- ► ES_P({a}) = def_P(a)

cf_Clark's completion

Loops and loop formulas

External support formula for $Y \subseteq At(P)$

- For a rule *r*:
- bd[∧](r) the conjunction of all literals in the body of r with all not c replaced with ¬c
- ► $ES_P(Y)$ the disjunction of $bd^{\wedge}(r)$ for all $r \in P$ st:
 - $hd(r) \in Y$

•
$$bd^+(r) \cap Y = \emptyset$$

- For finite programs: well-formed formulas
- Hence, will assume finiteness

Observations

- $ES_P(\emptyset) = \top$
- ► ES_P({a}) = def_P(a)

cf. Clark's completion. Summer School on LP and CL 2008 for finite programs, the following conditions are equivalent

- X is a stable model of P
- ▶ X is a model of $cmpl \leftarrow (P) \cup \{Y^{\land} \rightarrow ES_{P}(Y): Y \subseteq At(P)\}$
- ▶ X is a model of $cmpl \leftarrow (P) \cup \{Y^{\vee} \rightarrow ES_P(Y) \colon Y \subseteq At(P)\}$

• OK to replace $cmpl^{\leftarrow}(P)$ with cmpl(P)

- $cmpl^{\rightarrow}(P) \subseteq \{ Y^{\wedge} \rightarrow ES_{P}(Y) \colon Y \subseteq At(P) \}$
- $cmpl^{\rightarrow}(P) \subseteq \{ \mathsf{Y}^{\vee} \to ES_P(\mathsf{Y}) \colon \mathsf{Y} \subseteq At(P) \}$

Definition

- A loop is a set Y ⊆ At(P) that induces in G⁺(P) a strongly connected subgraph
- In particular, all singleton sets are loops

Program P

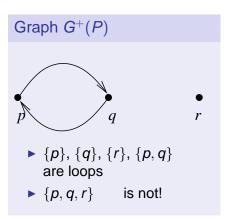
 $p \leftarrow q, not r$ $q \leftarrow p$ $r \leftarrow not p$

Graph $G^+(P)$

 {p}, {q}, {r}, {p, q} are loops
 {p, q, r} is not!

Program P

 $p \leftarrow q, not r$ $q \leftarrow p$ $r \leftarrow not p$



For finite programs, the following conditions are equivalent

- X is a stable model of P
- ▶ X is a model of $cmpl^{\leftarrow}(P) \cup \{Y^{\wedge} \to ES_{P}(Y): Y a \text{ loop}\}$
- ▶ X is a model of $cmpl \leftarrow (P) \cup \{Y^{\vee} \rightarrow ES_{P}(Y): Y a \text{ loop}\}$
- OK to replace $cmpl^{\leftarrow}(P)$ with cmpl(P)
 - Singleton sets are loops!

Loop Theorem

Let X be a stable model of P

$$\blacktriangleright \Rightarrow \quad X \models P \quad \Rightarrow \quad X \models P^X$$

$$\blacktriangleright X \models P \quad \Rightarrow \quad X \models cmpl \leftarrow (P)$$

- Let Y be a loop st: $X \models Y^{\wedge} \Rightarrow X \cap Y \neq \emptyset$
- Let a ∈ Y be the "first" element of Y in X recall that X = LM(P^X)
- ► ⇒ $\exists r \in P$ st: a = hd(r), $bd^+(r) \cap Y = \emptyset$

►
$$\Rightarrow$$
 bd^{\(}(r) is a disjunct of ES_P(Y)

► Also: $bd^+(r) \subseteq X$ and $bd^-(r) \cap X = \emptyset \Rightarrow X \models bd^{\wedge}(r)$

$$\blacktriangleright \Rightarrow \quad X \models ES_{\mathcal{P}}(Y) \quad \Rightarrow \quad X \models Y^{\wedge} \rightarrow ES_{\mathcal{P}}(Y)$$

No difference if Y[^] replaced with Y[^]

Let
$$X \models cmpl^{\leftarrow}(P) \cup \{ Y^{\wedge} \rightarrow ES_{P}(Y) \colon Y - a \text{ loop} \}$$

$$\triangleright \Rightarrow X \models P \Rightarrow X \models P^X$$

• Let
$$X' = LM(P^X) \Rightarrow X' \subseteq X$$

- Let $X \setminus X' \neq \emptyset$
- Consider subgraph H of G⁽P) induced by X \ X'
- Let Y be a "terminal" strongly connected component of H no edge in H starts in Y and ends outside of Y

Loop Theorem

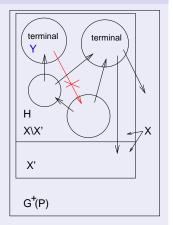
Let
$$X \models cmpl^{\leftarrow}(P) \cup \{Y^{\wedge} \rightarrow ES_{P}(Y) \colon Y - a \text{ loop}\}$$

$$\blacktriangleright \Rightarrow X \models P \Rightarrow X \models P^X$$

• Let
$$X' = LM(P^X) \Rightarrow X' \subseteq X$$

• Let
$$X \setminus X' \neq \emptyset$$

- Consider subgraph H of G^(P) induced by X \ X'
- Let Y be a "terminal" strongly connected component of H no edge in H starts in Y and ends outside of Y



Loop Theorem

Proof, cont'd

• $X \models Y^{\wedge} \rightarrow ES_{P}(Y)$ (also: $X \models Y^{\vee} \rightarrow ES_{P}(Y)$)

Since
$$Y \subseteq X$$
: $\Rightarrow X \models ES_P(Y)$

$$\blacktriangleright \Rightarrow \exists r \in P \text{ st: } hd(r) \in Y, \quad bd^+(r) \cap Y = \emptyset, \quad X \models bd^{\wedge}(r)$$

$$\blacktriangleright$$
 \Rightarrow $bd^+(r) \subseteq X$ and $r^X \in P^X$

- Since Y terminal and $bd^+(r) \cap Y = \emptyset$: $\Rightarrow bd^+(r) \subseteq X'$
 - if $a \in bd^+(r)$: $a \in X$
 - (hd(r), a) edge in $G^+(P)$
 - if $a \in X \setminus X'$: (hd(r), a) edge in H
 - \Rightarrow $a \in Y$, contradiction
 - $\blacktriangleright \Rightarrow a \in X'$
- Since $X' \models P^X$: $\Rightarrow X' \models r^X$
- ▶ \Rightarrow $hd(r) \in X'$
- Since $X' \cap Y = \emptyset$: \Rightarrow contradiction

Some programs have no stable nor supported models

- Sufficient conditions for the existence of stable models
- 4-val supported and stable models

Sufficient conditions

General dependency graph G(P)

- Atoms of P are vertices
- ▶ (a, b) is an edge in P if for some $r \in P$: $hd(r) = a, b \in bd(r)$
- If $b \in bd^+(r)$ edge is positive
- If $b \in bd^{-}(r)$ edge is negative

A propositional program P is

- Call-consistent: if G(P) has no odd cycles (cycles with an odd number of negative edges)
- Stratified: if G(P) has no paths with infinitely many negative edges
 - in particular, no cycles with a negative edge (for finite programs both conditions are equivalent)

Sufficient conditions

General dependency graph G(P)

- Atoms of P are vertices
- ▶ (a, b) is an edge in P if for some $r \in P$: $hd(r) = a, b \in bd(r)$
- If $b \in bd^+(r)$ edge is positive
- If $b \in bd^{-}(r)$ edge is negative

A propositional program P is

- Call-consistent: if G(P) has no odd cycles (cycles with an odd number of negative edges)
- Stratified: if G(P) has no paths with infinitely many negative edges
 - in particular, no cycles with a negative edge (for finite programs both conditions are equivalent)

Results

- ► If a finite logic program is call-consistent, it has a stable model
- If a program is stratified it has a unique stable model

Splitting

Let P and Q be programs such that P does not contain any of the head atoms of Q

"Q above P"

A set *M* is a stable model of *P* ∪ *Q* iff there is a stable model *N* of *P* such that *M* is a stable model of *Q* ∪ *N*

Splitting Theorem

Proof: (\Rightarrow) Let $M \in StM(P \cup Q)$

Splitting Theorem

Next, we show that $M \in StM(Q \cup N)$

► Recall:
$$N = M \cap At(P) \Rightarrow N \subseteq M$$

► Also:
$$M \models Q \Rightarrow M \models Q^M \cup N = (Q \cup N)^M$$

• Let
$$M' \subseteq M$$
 be st: $M' \models (Q \cup N)^M$

$$\blacktriangleright \Rightarrow N \subseteq M' \quad M' \models \mathsf{Q}^M$$

▶ Recall:
$$N \models P^N$$
 and so $N \models P^M$ (as $P^M = P^N$)

$$\blacktriangleright \Rightarrow M' \models P^M \Rightarrow M' \models (P \cup Q)^M$$

► Recall:
$$M = LM((P \cup Q)^M) \Rightarrow M = M'$$

$$\blacktriangleright \Rightarrow M = LM((P \cup N)^M) \Rightarrow M \in StM(Q \cup N)$$

Conversely: $M \in StM(Q \cup N)$ and $N \in StM(P)$

$$\blacktriangleright \Rightarrow M \models Q, \quad N \subseteq M, \quad M \subseteq hd(Q) \cup N$$

$$\blacktriangleright \Rightarrow M \cap At(P) = N \Rightarrow M \models P$$

$$\blacktriangleright \Rightarrow \quad M \models P \cup Q \quad \Rightarrow \quad M \models (P \cup Q)^{M}$$

• Let
$$M' \subseteq M$$
 be st: $M' \models (P \cup Q)^M$

$$\blacktriangleright N' := M' \cap At(P)$$

$$\blacktriangleright \Rightarrow M' \models P^M \Rightarrow N' \models P^M \Rightarrow N' \models P^N$$

$$\blacktriangleright \Rightarrow N' = N \Rightarrow N' \subseteq M' \Rightarrow M' \models Q^M \cup N = (Q \cup N)^M$$

$$\blacktriangleright \Rightarrow M' = M \Rightarrow M = LM((Q \cup N)^M \Rightarrow M \in StM(P \cup Q))$$

Stratification

Equivalent definition in the finite case

- P stratified if
 - $hd(P) \cap bd^{-}(P) = \emptyset$, or
 - ▶ $P = P_1 \cup P_2$, where P_2 stratified, $hd(P_1) \cap (bd^-(P_1) \cup At(P_2)) = \emptyset$

Finite stratified programs have a unique stable model

- Induction
- Basis: exident
- Inductive step: P₂ has a unique stable model, say N
- Clearly, $P_1 \cup N$ has a unique stable model, too
- Apply splitting theorem

Equivalence — logics behind nonmonotonic logics

What do I mean?

- Logic allows us to manipulate theories
- Tautologies can be added or removed without changing the meaning
- Consequences of formulas in theories can be added or removed without changing the meaning
 - $\{p, p \rightarrow q\}$ the same as $\{p, p \rightarrow q, q\}$
 - one can always be replaced with another (within any larger context)
- Equivalence for replacement logical equivalence necessary and sufficient
- Is there a logic which captures such manipulation with theories in nonmonotonic systems?

Is it important?

Query optimization

- Compute answers to a query Q (program) from a knowledge base KB (another program) reason from Q ∪ KB
- ► Rewrite Q into an equivalent query Q', which can be processed more efficiently reasoning from Q' ∪ KB easier

When are two queries equivalent?

- If Q ∪ KB and Q' ∪ KB have the same meaning not quite what we want — knowledge-base dependent
- If Q ∪ KB and Q' ∪ KB have the same meaning for every knowledge base KB better knowledge base independent

better — knowledge-base independent

Towards modular logic programming

Equivalence of programs

P and Q are equivalent if they have the same models

Nonmonotonic equivalence of programs

P and Q are stable-equivalent if they have the same stable models

Towards modular logic programming

Equivalence of programs

P and Q are equivalent if they have the same models

Nonmonotonic equivalence of programs

P and Q are stable-equivalent if they have the same stable models

Towards modular logic programming

Equivalence for replacement

- Equivalence for replacement for every program R, programs $P \cup R$ and $Q \cup R$ have the same stable models
- Commonly known as strong equivalence

Lifschitz, Pearce, Valverde 2001; Lin 2002; Turner 2003; Eiter, Fink 2003; Eiter, Fink, Tompits, Woltran, 2005; T_ 2006; Woltran 2008

- Different than equivalence
 - $\{p \leftarrow not q\}$ and $\{q \leftarrow not p\}$
 - The same models but different meaning
- Different than stable-equivalence
 - $P = \{p\}$ and $Q = \{p \leftarrow not q\}$
 - ▶ The same stable models; {*p*} is the only stable model in each case
 - ▶ But, $P \cup \{q\}$ and $Q \cup \{q\}$ have different stable models!
 - ($\{p,q\}$ and $\{q\}$, respectively)

Se-model characterization

- A pair (X, Y) of sets of atoms is an se-model of a program P if
 - $X \subset Y$
 - Y ⊨ P
 X ⊨ P^Y
- SE(P) set of se-models of P
- Logic programs P and Q are strongly equivalent iff they have the same se-models (SE(P) = SE(Q))
 - A similar concept characterizes strong equivalence of default theories Turner 2003

Lemma 1: $SE(P) = SE(Q) \Rightarrow StM(P) = StM(Q)$

Lemma 2: $SE(P \cup R) = SE(P) \cap SE(R)$

- ▶ $(X, Y) \in SE(P \cup R)$ iff
- ► $X \subseteq Y$ and $Y \models P \cup R$ and $X \models (P \cup R)^Y = P^Y \cup R^Y$ iff
- ▶ *X* ⊆ Y and (Y \models *P* and Y \models *R*) and (X \models *P*^Y and X \models *R*^Y) iff
- ► $(X \subseteq Y, Y \models P, X \models P^{Y})$, and $(X \subseteq Y, Y \models R, X \models R^{Y})$ iff
- $(X, Y) \in SE(P)$ and $(X, Y) \in SE(R)$ iff
- ► $(X, Y) \in SE(P) \cap SE(R)$

$SE(P) = SE(Q) \Rightarrow P$ and Q are strongly equivalent

- ▶ By Lemma 2, for every R: $SE(P \cup R) = SE(P) \cap SE(R) = SE(Q) \cap SE(R) = SE(PQ \cup R)$
- ▶ By Lemma 1, $StM(P \cup R) = StM(Q \cup R)$

P and Q are strongly equivalent \Rightarrow SE(P) = SE(Q)

- ▶ Let $(X, Y) \in SE(P) \setminus SE(Q)$: $(X, Y) \in SE(P)$ and $(X, Y) \notin SE(Q)$
- $\blacktriangleright \Rightarrow Y \models P^Y \Rightarrow Y = LM(P^Y \cup Y)$
- ► Since $P^{Y} \cup Y = (P \cup Y)^{Y}$, $Y = LM((P \cup Y)^{Y}) \Rightarrow$ $Y \in StM(P \cup Y)$
- $\blacktriangleright \ \Rightarrow \ \ Y \in \textit{StM}(\mathsf{Q} \cup \mathsf{Y}) \ \ \Rightarrow \ \ \mathsf{Y} \models \mathsf{Q}$

 $\blacktriangleright \Rightarrow X \nvDash Q^{Y}$

$SE(P) = SE(Q) \Rightarrow P$ and Q are strongly equivalent

- ▶ By Lemma 2, for every R: $SE(P \cup R) = SE(P) \cap SE(R) = SE(Q) \cap SE(R) = SE(PQ \cup R)$
- ▶ By Lemma 1, $StM(P \cup R) = StM(Q \cup R)$

P and *Q* are strongly equivalent \Rightarrow SE(P) = SE(Q)

▶ Let $(X, Y) \in SE(P) \setminus SE(Q)$: $(X, Y) \in SE(P)$ and $(X, Y) \notin SE(Q)$

$$\blacktriangleright \Rightarrow Y \models P^{Y} \Rightarrow Y = LM(P^{Y} \cup Y)$$

► Since $P^{Y} \cup Y = (P \cup Y)^{Y}$, $Y = LM((P \cup Y)^{Y}) \Rightarrow$ $Y \in StM(P \cup Y)$

$$\blacktriangleright \ \Rightarrow \ \ Y \in StM(Q \cup Y) \ \ \Rightarrow \ \ Y \models Q$$

$$\blacktriangleright \Rightarrow X \not\models Q^{\gamma}$$

$(X, Y) \in SE(P), (X, Y) \notin SE(Q), Y \models Q, X \not\models Q^{Y}$

Uniform equivalence

- Programs P and Q are uniformly equivalent if for every set D of facts (rules with empty body) P ∪ D and Q ∪ D have the same stable models
- Relevant for DB query optimization
- Different than other types of equivalence discussed here

Se-model characterization

- Programs P and Q are uniformly equivalent iff
 - ▶ for every $Y \subseteq At$, Y is a model of P if and only if Y is a model of Q
 - ▶ for every X, Y ∈ SE(P) such that $X \subset Y$, there is $U \subseteq At$ such that $X \subseteq U \subset Y$ and $(U, Y) \in SE(Q)$
 - for every (X, Y) ∈ SE(Q) such that X ⊂ Y, there is U ⊆ At such that X ⊆ U ⊂ Y and (U, Y) ∈ SE(P)

Ue-model characterization

- A pair (X, Y) of sets of atoms is a *ue-model* of a program P if it is an se-model of P and
- ▶ For every se-model (X', Y) such that $X \subseteq X'$, X' = X or X' = Y
- Finite logic programs P and Q are uniformly equivalent iff they have the same ue-models

Eiter and Fink, 2003

Formulas

- Base: atoms and the symbol \perp ("false")
- Connectives \land , \lor and \rightarrow
- Shortcuts
 - $\neg F ::= F \rightarrow \bot$
 - $\blacktriangleright \ \top ::= \bot \to \bot$
 - $F \leftrightarrow G ::= (F \rightarrow G) \land (G \rightarrow F)$

General logic programs

Positive and negative occurrences of atoms in formulas

- An occurrence of a in F is positive, if the # of implications with this occurrence of a in antecedent is even
- Otherwise, it is negative
- An occurrence of a in F is strictly positive if no implication contains this occurrence of a in the antecedent
 - $\neg F$ (that is, $F \rightarrow \bot$) has no strict occurrences of any atom.
- A head atom (of a formula) an atom with at least one strictly positive occurrence
- ▶ In $(\neg p \rightarrow q) \rightarrow (p \lor \neg q)$:
 - the first occurrence of p is negative
 - the second occurrence of p is strictly positive
 - both occurrences of q are negative

Reduct of a formula F with respect to a set X of atoms

The formula F^X obtained by replacing in F each maximal subformula of F that is not satisfied by X with ⊥

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$ and $X = \{p\}$

•
$$\neg p = p \rightarrow \bot$$
, and $X \models \neg p \rightarrow q$

► Thus: ¬p is a maximal subformula not satisfied by X

$$\blacktriangleright \neg q = q \rightarrow \bot, X \not\models q, X \models \neg q$$

- ▶ Thus, *q* is a maximal subformula not satisfied by *X*
- Thus: $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$
- Classically equivalent to p

Reduct of a formula F with respect to a set X of atoms

The formula F^X obtained by replacing in F each maximal subformula of F that is not satisfied by X with ⊥

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$ and $X = \{p\}$

•
$$\neg p = p \rightarrow \bot$$
, and $X \models \neg p \rightarrow q$

► Thus: ¬p is a maximal subformula not satisfied by X

$$\blacktriangleright \ \neg q = q \rightarrow \bot, X \not\models q, X \models \neg q$$

- Thus, q is a maximal subformula not satisfied by X
- ▶ Thus: $F^X = (\bot \to q) \land ((\bot \to \bot) \to p)$
- Classically equivalent to p

To facilitate computation of the reduct

$$\blacktriangleright \perp^{X} = \bot$$

- ▶ For *a* an atom, if $a \in X$, $a^X = a$; otherwise, $a^X = \bot$
- If X ⊨ F ∘ G, (F ∘ G)^X = F^X ∘ G^X; otherwise, (F ∘ G)^X = ⊥ (∘ stands for any of ∧, ∨, →)

▶ If
$$X \models F$$
, $(\neg F)^X = \bot$; otherwise,
 $(\neg F)^X = (F \rightarrow \bot) = (\bot \rightarrow \bot) = \top$

Definition

A set X of atoms is a stable model of a formula F if X is a minimal model of F

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p), X = \{p\}$

- ▶ $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$ (which is equivalent to *p*)
- > X is a minimal model of F^X , so a stable model

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p), X = \{p, q\}$

F^X = (⊥ → q) ∧ (⊥ → p) (which is equivalent to ⊤)
 X is not a minimal model of F^X, so not a stable model

Definition

A set X of atoms is a stable model of a formula F if X is a minimal model of F

Example:
$$F = (\neg p \rightarrow q) \land (\neg q \rightarrow p), X = \{p\}$$

- ▶ $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$ (which is equivalent to p)
- ► X is a minimal model of F^X, so a stable model

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p), X = \{p, q\}$

F^X = (⊥ → q) ∧ (⊥ → p) (which is equivalent to ⊤)
 X is not a minimal model of F^X, so not a stable model

Definition

A set X of atoms is a stable model of a formula F if X is a minimal model of F

Example:
$$F = (\neg p \rightarrow q) \land (\neg q \rightarrow p), X = \{p\}$$

- ▶ $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$ (which is equivalent to p)
- X is a minimal model of F^X , so a stable model

Example:
$$F = (\neg p \rightarrow q) \land (\neg q \rightarrow p), X = \{p, q\}$$

- ► $F^{X} = (\bot \rightarrow q) \land (\bot \rightarrow p)$ (which is equivalent to \top)
- > X is not a minimal model of F^X , so not a stable model

Properties

- If X is a stable model of a formula F then X consists of head atoms of F
- A least model of a Horn formula (conjunction of definite Horn clauses given as implications) is a unique stable model of the theory
- A set X is a stable model of a formula F ∧ ¬G if and only if X is a stable model of F and X ⊨ ¬G

Strong equivalence

- Formulas F and F' are strongly equivalent if for every formula G, F \land G and F' \land G have the same stable models
- (X, Y) is an se-model of F if $Y \subseteq At$, $X \subseteq Y$, $Y \models F$ and $X \models F^{Y}$.
- The following conditions are equivalent:
 - Formulas *F* and *G* are strongly equivalent
 - ► For every set X of atoms, F^X and G^X are equivalent in classical logic
 - F and G have the same se-models
 - ► *F* and *G* are equivalent in the logic here-and-there (details later)

Splitting

- Let F and G be formulas such that F does not contain any of the head atoms of G
- A set X is a stable model of F ∧ G iff there is a stable model Y of F such that X is a stable model of G ∧ ∧ Y

2-input one-step operator Φ_P

Given two interpretations I and J

 $\Phi_{\mathcal{P}}(I,J) = \{hd(r) \colon r \in \mathcal{P}, bd^+(r) \subseteq I, bd^-(r) \cap J = \emptyset\}$

Φ_P(·, J) monotone
I⊆ I' ⇒ Φ_P(I, J) ⊆ Φ_P(I', J)
Φ_P(I, ·) antimonotone
J⊆ J' ⇒ Φ_P(I, J') ⊆ Φ_P(I, J)
Φ_P(I, I) = T_P(I)

Multivalued semantics: 4-val interpretations

Pairs (I, J) of 2-val interpretations

- Atoms in I are known and atoms in J are possible
- Give rise to 4 truth values
 - If $a \in I \cap J$, a is true
 - If $a \notin I \cup J$, a is false
 - If $a \in J \setminus I$, a is unknown
 - If $a \in I \setminus J$, a is overdefined (inconsistent)
- (I, J) consistent if $I \subseteq J$

Alternatively

- Functions val from At to {t, f, u, i}
- I := {a | val(a) = t or val(a) = i}
- ► J := {a | val(a) = t or val(a) = u}

Multivalued semantics: 4-val interpretations

Pairs (I, J) of 2-val interpretations

- Atoms in I are known and atoms in J are possible
- Give rise to 4 truth values
 - If $a \in I \cap J$, a is true
 - If $a \notin I \cup J$, a is false
 - If $a \in J \setminus I$, a is unknown
 - If $a \in I \setminus J$, a is overdefined (inconsistent)
- (I, J) consistent if $I \subseteq J$

Alternatively

Functions val from At to {t, f, u, i}

• $J := \{a \mid val(a) = \mathbf{t} \text{ or } val(a) = \mathbf{u}\}$

Multivalued semantics

4-val one-step provability operator

•
$$T_P(I,J) = (\Phi_P(I,J), \Phi_P(J,I))$$

- Precision (information) ordering:
 (I, J)≤_i(I', J') if I ⊆ I' and J' ⊆ J
- T_P monotone wrt \leq_i

$$\blacktriangleright (I,J) \leq_i (I'J') \qquad \Rightarrow \qquad \mathcal{T}_{\mathcal{P}}(I,J) \leq_i \mathcal{T}_{\mathcal{P}}(I',J')$$

- We have: $I \subseteq I'$ and $J' \subseteq J$
- $\Phi_P(I, J) \subseteq \Phi_P(I', J)$ (monotonicity of $\Phi_P(\cdot, J)$)
- $\Phi_P(I, J') \subseteq \Phi_P(I, J)$ (antimonotonicity of $\Phi_P(I, \cdot)$)

(I, J) consistent $\Rightarrow T_P(I, J)$ consistent

• Let $I \subseteq J$

$\blacktriangleright \Rightarrow \quad \Phi_P(I,J) \subseteq \Phi_P(I,I) \subseteq \Phi_P(J,I)$

Multivalued semantics

4-val one-step provability operator

$$\blacktriangleright \mathcal{T}_{\mathcal{P}}(I,J) = (\Phi_{\mathcal{P}}(I,J),\Phi_{\mathcal{P}}(J,I))$$

- Precision (information) ordering:
 (I, J)≤_i(I', J') if I ⊆ I' and J' ⊆ J
- T_P monotone wrt \leq_i

$$\blacktriangleright (I,J) \leq_i (I'J') \qquad \Rightarrow \qquad \mathcal{T}_{\mathcal{P}}(I,J) \leq_i \mathcal{T}_{\mathcal{P}}(I',J')$$

- We have: $I \subseteq I'$ and $J' \subseteq J$
- $\Phi_P(I, J) \subseteq \Phi_P(I', J)$ (monotonicity of $\Phi_P(\cdot, J)$)
- $\Phi_P(I, J') \subseteq \Phi_P(I, J)$ (antimonotonicity of $\Phi_P(I, \cdot)$)

(I, J) consistent $\Rightarrow T_P(I, J)$ consistent

• Let $I \subseteq J$

$$\blacktriangleright \Rightarrow \Phi_{\mathcal{P}}(I,J) \subseteq \Phi_{\mathcal{P}}(I,I) \subseteq \Phi_{\mathcal{P}}(J,I)$$

Recall: $\mathcal{T}_P(I, J) = (\Phi_P(I, J), \Phi_P(J, I))$ and $\mathcal{T}_P(I) = \Phi_P(I, I)$

- ► (I, J) is a 4-val supported model of P if $(I, J) = T_P(I, J)$
- (I, I) is a 4-val supported model iff I is a supported model
 - $(I, I) = T_P(I, I)$ iff $(I, I) = (\Phi_P(I, I), \Phi_P(I, I)) = (T_P(I), T_P(I))$
- The least 4-val supported model exists!
 - T_P is monotone and so has the least (wrt \leq_i) fixpoint
 - Moreover, it is consistent!
- ► Kripke-Kleene (Fitting) fixpoint or semantics: $(KK^{t}(P), KK^{p}(P))$

- 4-val Gelfond-Lifschitz operator
- $\blacktriangleright \mathcal{GL}_{P}(I,J) = (GL_{P}(J),GL(I))$
- Also monotone wrt \leq_i
- (I, J) is a 4-val stable model if $\mathcal{GL}_P(I, J) = (I, J)$
- M is a stable model of P if and only if (M, M) is a 4-val stable model of P
- ► The least fixpoint of *GL* exists!! (by monotonicity)
- And is consistent
 - if $I \subseteq J$ then: $GL_P(J) \subseteq GL(I)$ (antimonotonicity)
- ▶ Well-founded fixpoint (semantics): (*WF*^t(*P*), *WF*^p(*P*))
- For every stable model M of P

$$WF^t(P) \subseteq M \subseteq WF^p(P)$$

Logic here-and-there

Logic here-and-there, Heyting 1930

Syntax

- Connectives: \bot , \lor , \land , \rightarrow
- Formulas standard extension of atoms by means of connectives
- ▶ $\neg \varphi$ shorthand for $\varphi \rightarrow \bot$
- $\varphi \leftrightarrow \psi$ shorthand for $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
- ► Language L_{ht}

Why important?

- Disjunctive logic programs special theories in L_{ht}
 - $a_1 | \ldots | a_k \leftarrow b_1, \ldots, b_m$, not c_1, \ldots not c_n
 - ► $b_1 \land \ldots \land b_m \land \neg c_1 \land \ldots \land \neg c_n \to c_1 \lor \ldots \lor c_n$
- General logic programs (Ferraris, Lifschitz) = theories in \mathcal{L}_{ht}
 - answer-set semantics extends to general logic programs
 - equilibrium models in logic ht
 - the two coincide!

Entailment in logic here-and-there

Ht-interpretations

- ▶ Pairs $\langle H, T \rangle$, where $H \subseteq T$ are sets of atoms
- Kripke interpretations with two worlds "here" and "there"
 - H determines the valuation for "here"
 - T determines the valuation for "there"

Kripke-model satisfiability in the world "here"

$$\checkmark$$
 $\langle H, T \rangle \not\models_{ht} \bot$

- ▶ $\langle H, T \rangle \models_{ht} p$ if $p \in H$ (for atoms only)
- ► $\langle H, T \rangle \models_{ht} \varphi \land \psi$ and $\langle H, T \rangle \models_{ht} \varphi \lor \psi$ standard recursion
- $\blacktriangleright \langle H, T \rangle \models_{ht} \varphi \rightarrow \psi \text{ if }$
 - $\blacktriangleright \langle H, T \rangle \not\models_{ht} \varphi \text{ or } \langle H, T \rangle \models_{ht} \psi$
 - $\mathcal{T} \models \varphi \rightarrow \psi$ (in standard propositional logic).

Entailment in logic here-and-there

Ht-interpretations

- ▶ Pairs $\langle H, T \rangle$, where $H \subseteq T$ are sets of atoms
- Kripke interpretations with two worlds "here" and "there"
 - H determines the valuation for "here"
 - T determines the valuation for "there"

Kripke-model satisfiability in the world "here" \models_{ht}

$$\bullet \langle H, T \rangle \not\models_{ht} \bot$$

- $\langle H, T \rangle \models_{ht} p$ if $p \in H$ (for atoms only)
- ► $\langle H, T \rangle \models_{ht} \varphi \land \psi$ and $\langle H, T \rangle \models_{ht} \varphi \lor \psi$ standard recursion

•
$$\langle H, T \rangle \models_{ht} \varphi \rightarrow \psi$$
 if

- $\langle H, T \rangle \not\models_{ht} \varphi \text{ or } \langle H, T \rangle \models_{ht} \psi$
- $T \models \varphi \rightarrow \psi$ (in standard propositional logic).

ht-model, ht-validity, ht-equivalence

- ▶ If $\langle H, T \rangle \models_{ht} \varphi$ $\langle H, T \rangle$ is an *ht-model* of φ
- φ is *ht-valid* if for every *ht*-model $\langle H, T \rangle$, $\langle H, T \rangle \models \varphi$
- φ and ψ are *ht-equivalent* if they have the same *ht*-models
- ▶ φ and ψ are ht-equivalent iff $\varphi \leftrightarrow \psi$ is *ht*-valid

Proof theory

Natural deduction — sequents and rules

- ► Sequents $\Gamma \Rightarrow \varphi$ " φ under the assumptions Γ "
- ▶ Introduction rules for \land , \lor , \rightarrow

$$\frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \psi}{\Gamma, \Delta \Rightarrow \varphi \land \psi}$$

• Elimination rules for \land , \lor , \rightarrow

$$\frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \varphi \to \psi}{\Gamma, \Delta \Rightarrow \psi}$$

Contradiction

$$\frac{\Gamma \Rightarrow \bot}{\Gamma \Rightarrow \varphi}$$

Weakening

$$\frac{\Gamma \Rightarrow \varphi}{\Gamma' \Rightarrow \varphi} \qquad \text{for all } \Gamma', \Gamma \text{ s.t. } \Gamma' \subseteq \Gamma$$

Summer School on LP and CL 2008

Proof theory

Axiom schemas

$$\begin{array}{ll} (AS1) & \varphi \Rightarrow \varphi \\ (AS2) & \Rightarrow \varphi \lor \neg \varphi \\ (AS2') & \Rightarrow \neg \varphi \lor \neg \neg \varphi \\ (AS2'') & \Rightarrow \varphi \lor (\varphi \rightarrow \psi) \lor \neg \psi \end{array}$$

(Excluded Middle) (Weak EM) (in between (AS2) and (AS2')

Logics through natural deduction

Propositional logic Intuitionistic logic Logic here-and-there (AS1), (AS2) (AS1) (AS1),(AS2'')

Proof theory

Axiom schemas

$$\begin{array}{ll} (\mathsf{AS1}) & \varphi \Rightarrow \varphi \\ (\mathsf{AS2}) & \Rightarrow \varphi \lor \neg \varphi \\ (\mathsf{AS2'}) & \Rightarrow \neg \varphi \lor \neg \neg \varphi \\ (\mathsf{AS2''}) & \Rightarrow \varphi \lor (\varphi \rightarrow \psi) \lor \neg \psi \end{array}$$

(Excluded Middle) (Weak EM) (in between (AS2) and (AS2')

Logics through natural deduction

Propositional logic Intuitionistic logic Logic here-and-there (AS1), (AS2) (AS1) (AS1),(AS2'')

Soundness and completeness

A formula is a theorem of ht if and only if it is ht-valid

In particular

• φ and ψ are *ht*-equivalent iff $\Rightarrow \varphi \leftrightarrow \psi$ is a theorem of *ht*

Soundness and completeness

A formula is a theorem of ht if and only if it is ht-valid

In particular

▶ φ and ψ are *ht*-equivalent iff $\Rightarrow \varphi \leftrightarrow \psi$ is a theorem of *ht*

Equilibrium models, Pearce 1997

- $\langle T, T \rangle$ is an *equilibrium model* of a set A of formulas if
 - $\langle T, T \rangle \models_{ht} A$, and
 - for every $H \subseteq T$ such that $\langle H, T \rangle \models_{ht} A, H = T$

Key connection

A set *M* of atoms is an answer set of a disjunctive logic program *P* (general logic program *P*) if and only if ⟨*M*, *M*⟩ is an equilibrium model for *P*

Equilibrium models, Pearce 1997

- $\langle T, T \rangle$ is an *equilibrium model* of a set A of formulas if
 - $\langle T, T \rangle \models_{ht} A$, and
 - for every $H \subseteq T$ such that $\langle H, T \rangle \models_{ht} A, H = T$

Key connection

► A set *M* of atoms is an answer set of a disjunctive logic program *P* (general logic program *P*) if and only if (*M*, *M*) is an equilibrium model for *P*

Strong equivalence

- Let P and Q be two (general) programs. The following conditions are equivalent:
 - P and Q are strongly equivalent
 - P and Q are ht-equivalent
 - P and Q have the same ht-models
 - P ↔ Q is ht-valid
 - $\blacktriangleright \Rightarrow P \leftrightarrow Q \text{ is a theorem of } ht$

Algebraic approach

The problem

Complex landscape of nonmonotonicity

- Multitude of formalisms
- Different intuitions
- Different languages
- Different semantics
- Complexity

Needed!

Unifying abstract foundation

The problem

Complex landscape of nonmonotonicity

- Multitude of formalisms
- Different intuitions
- Different languages
- Different semantics
- Complexity

Needed!

Unifying abstract foundation

Basic lesson for this segment

- Major nonmonotonic systems
 - logic programming
 - default logic
 - autoepistemic logics

can be given a unified algebraic treatment

- Each system can be assigned the same family of semantics
- Key concepts: lattices and bilattices, operators and fixpoints
- Key ideas: approximating operators and stable operators
- Key tool: Knaster-Tarski Theorem

Generalize Fitting's work on logic programming

- Central role of 4-valued van Emden-Kowalski operator T_P
- Derived stable operator, Ψ'_P
- 2-valued and 3-valued supported models and Kripke-Kleene semantics described by fixpoints of T_P
- 2-valued and 3-valued stable models and well-founded semantics described by fixpoints of Ψ'_P

Lattices

Key definitions, some notation

- $\blacktriangleright \langle L, \leq \rangle$
 - L is a nonempty set
 - ≤ is a partial order such that every two lattice elements have *lub* (join) and *glb* (meet)
- Elements of L express
 - degree of truth
 - measure of knowledge
- sector of increased truth or knowledge
- Complete lattices (both bounds defined for all sets)
- ▶ ⊥, ⊤

Lattices - examples

Lattice \mathcal{TWO}

Lattice \mathcal{A}_2

- set of all 2-valued interpretations
- componentwise extension of the ordering from TWO

Lattice \mathcal{W}

family of sets of 2-valued interpretations

 $\blacktriangleright W_1 \sqsubseteq W_2 \text{ if } W_2 \subseteq W_1$

Lattices - examples

Lattice \mathcal{TWO}

Lattice \mathcal{A}_2

- set of all 2-valued interpretations
- componentwise extension of the ordering from TWO

Lattice \mathcal{W}

family of sets of 2-valued interpretations

 $\blacktriangleright W_1 \sqsubseteq W_2 \text{ if } W_2 \subseteq W_1$

Lattices - examples

Lattice \mathcal{TWO}

Lattice \mathcal{A}_2

- set of all 2-valued interpretations
- componentwise extension of the ordering from TWO

Lattice $\ensuremath{\mathcal{W}}$

- family of sets of 2-valued interpretations
- $\blacktriangleright W_1 \sqsubseteq W_2 \text{ if } W_2 \subseteq W_1$

That's what it's all about!

- Truth or knowledge can be revised
- Revisions are described by operators on lattices
- Fixpoints states of truth or knowledge that cannot be revised

Monotone operators

- An operator O is monotone if $x \le y$ implies $O(x) \le O(y)$
- Knaster-Tarski Theorem: a monotone operator on a complete lattice has a least fixpoint

Antimonotone operators

- An operator O is antimonotone if $x \le y$ implies $O(y) \le O(x)$
- ▶ If O is antimonotone then O² is monotone:

$$x \leq y \Rightarrow O(y) \leq O(x) \Rightarrow O^2(x) \leq O^2(y)$$

- Oscillating pair: (x, y) is an oscillating pair for an operator O if O(x) = y and O²(x) = x
- Antimonotone operator O has an extreme oscillating pair

 $(Ifp(O^2), gfp(O^2))$

Key definitions, some notation

- A pair (x, y) approximates an element z if $x \le z \le y$
- Orderings of approximations:
 - information (or precision) ordering: $(x_1, y_1) \le i(x_2, y_2)$ iff $x_1 \le x_2$ and $y_2 \le y_1$
 - truth ordering: $(x_1, y_1) \leq_t (x_2, y_2)$ iff $x_1 \leq x_2$ and $y_1 \leq y_2$
- Bilattice $\langle L^2, \leq_i, \leq_t \rangle$
- A pair (x, y) is consistent if $x \le y$, and inconsistent, otherwise
- An element (x, y) is complete if x = y

Bilattices - examples

Bilattice \mathcal{FOUR}

Bilattice \mathcal{A}_4

- set of all pairs of 2-valued interpretations (identified with 4-valued interpretations)
- componentwise extension of the orderings from FOUR

Bilattice \mathcal{FOUR}

Bilattice \mathcal{A}_4

- set of all pairs of 2-valued interpretations (identified with 4-valued interpretations)
- componentwise extension of the orderings from *FOUR*

Bilattice \mathcal{B}

- Family of pairs of sets of 2-valued interpretations
- Belief pairs
- $(P_1, S_1) \sqsubseteq_i (P_2, S_2)$ if $P_2 \subseteq P_1$ and $S_1 \subseteq S_2$
- ▶ $(P_1, S_1) \sqsubseteq_t (P_2, S_2)$ if $P_2 \subseteq P_1$ and $S_2 \subseteq S_1$

Approximating operators

Key definitions, some notation

•
$$A: L^2 \to L^2$$
 approximates $O: L \to L$ if

- A(x, x) = (O(x), O(x))
- A is \leq_i -monotone
- A is symmetric: $A^1(x, y) = A^2(y, x)$, where $A(x, y) = (A^1(x, y), A^2(x, y))$

Properties

- Approximating operators are consistent
- Complete fixpoints of A correspond to fixpoints of O
- Every fixpoint of A is approximated by the least fixpoint of A: Kripke-Kleene fixpoint of A
- Kripke-Kleene fixpoint of an approximating operator is consistent

Approximating operators

Key definitions, some notation

•
$$A: L^2 \to L^2$$
 approximates $O: L \to L$ if

- A(x, x) = (O(x), O(x))
- A is \leq_i -monotone

• A is symmetric:
$$A^{1}(x, y) = A^{2}(y, x)$$
, where $A(x, y) = (A^{1}(x, y), A^{2}(x, y))$

Properties

- Approximating operators are consistent
- Complete fixpoints of A correspond to fixpoints of O
- Every fixpoint of A is approximated by the least fixpoint of A: Kripke-Kleene fixpoint of A
- Kripke-Kleene fixpoint of an approximating operator is consistent

Getting down to business!

Stable operators

- If A : L² → L² is ≤_i-monotone then A¹(·, y) and A²(x, ·) are monotone
- For \leq_i -monotone operator $A : L^2 \rightarrow L^2$ define:

$$C_A^{\prime}(y) = \mathit{lfp}(A^1(\cdot,y)) \hspace{0.2cm} ext{and} \hspace{0.2cm} C_A^u(x) = \mathit{lfp}(A^2(x,\cdot))$$

- Since A is symmetric, $C_A^{\prime} = C_A^{\prime} = C_A$
- Stable operator for A:

$$\mathcal{C}_A(x,y) = (\mathcal{C}_A(y),\mathcal{C}_A(x))$$

- Stable fixpoints (relative to C_A)
- ► \leq_i -least fixpoint of C_A well-founded (WF) fixpoint of A

All quite easy to prove, in fact

- C_A is antimonotone
- C_A is \leq_i -monotone and \leq_t -antimonotone
- Fixpoints of C_A are \leq_t -minimal fixpoints of A
- Complete fixpoints of C_A correspond to fixpoints of C_A
- Complete fixpoints of C_A are fixpoints of O
- K-K fixpoint of $A \leq_i WF$ fixpoint of A

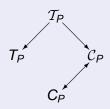
Logic programming — case study 1

Fitting

- Lattice A_2 , bilattice A_4
- Operators associated with program P
 - 2-valued van Emden-Kowalski operator T_P
 - Its approximation: 4-valued van Emden-Kowalski operator T_P
 - 2-valued stable operator (Gelfond-Lifschitz operator GL_P)
 - Stable operator C_P of T_P (operator Ψ'_P of Przymusinski)
- Semantics
 - Supported models: fixpoints of the operator $T_P(T_P)$
 - Kripke-Kleene semantics: least fixpoint of T_P
 - Stable models: fixpoints of the operator $C_P(C_P)$
 - Well-founded semantics: least fixpoint of C_P

Logic programming explained

Central role of T_P



Autoepistemic Logic — case study 2

Truth assignment function $\mathcal{H}_{V,I}$

For atom
$$p$$
: $\mathcal{H}_{V,I}(p) = I(p)$

- The boolean connectives standard way
- ► $\mathcal{H}_{V,I}(KF) = \mathbf{t}$, if for every $J \in V$, $\mathcal{H}_{V,J}(F) = \mathbf{t}$
- $\mathcal{H}_{V,I}(KF) = \mathbf{f}$, otherwise

AE models, expansions

• Moore's operator
$$D_T : \mathcal{W} \to \mathcal{W}$$

$$D_T(V) = \{I: \mathcal{H}_{V,I}(T) = \mathbf{t}\}$$

- ▶ Fixpoints of *D*_T autoepistemic models of *T*
- Autoepistemic models generate expansions

Autoepistemic Logic — case study 2

Truth assignment function $\mathcal{H}_{V,I}$

For atom
$$p$$
: $\mathcal{H}_{V,l}(p) = l(p)$

- The boolean connectives standard way
- ▶ $\mathcal{H}_{V,I}(KF) = \mathbf{t}$, if for every $J \in V$, $\mathcal{H}_{V,J}(F) = \mathbf{t}$
- $\mathcal{H}_{V,I}(KF) = \mathbf{f}$, otherwise

AE models, expansions

• Moore's operator $D_T : \mathcal{W} \to \mathcal{W}$

$$D_T(V) = \{I: \mathcal{H}_{V,I}(T) = \mathbf{t}\}$$

- Fixpoints of D_T autoepistemic models of T
- Autoepistemic models generate expansions

AEL — approximating operators

The setting

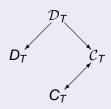
- Lattice *W*, bilattice *B*
- ► $\mathcal{H}^4_{(V,V'),I}$
- Approximating operator for $D_T D_T$ (DMT 98)

$$\mathcal{D}_{\mathcal{T}}(\mathsf{V},\mathsf{V}') = (\{I: \mathcal{H}^4_{(\mathsf{V},\mathsf{V}'),\mathit{I}}(\mathsf{T}) \geq_t (\mathsf{f},\mathsf{t})\}, \{I: \mathcal{H}^4_{(\mathsf{V},\mathsf{V}'),\mathit{I}}(\mathsf{T}) \geq_t (\mathsf{t},\mathsf{f})\})$$

- ► Complete fixpoints of D_T autoepistemic models of T
- The least fixpoint of D_T Kripke-Kleene fixpoint
 - approximates all autoepistemic models of T
- ► The stable operator for D_T : $C_T(V, V') = (C_T(V'), C_T(V))$
- What are the fixpoints of C_T?

Autoepistemic logic explained

Central role of $\mathcal{D}_{\mathcal{T}}$



Same setting as for AEL

- ► Lattice *W*, bilattice *B*
- $\mathcal{H}_{V,l}(\varphi) = I(\varphi)$, for every formula φ
- $\blacktriangleright d = \frac{\alpha: \beta_1, \dots, \beta_k}{\gamma}$
- $\mathcal{H}_{V,I}(d) = \mathbf{t}$ iff
 - there is $J \in V$ such that $J(\alpha) = \mathbf{f}$, or
 - ▶ there is *i*, $1 \le i \le k$ such that for every $J \in V$, $J(\beta_i) = f$, or
 - $l(\gamma) = \mathbf{t}$
- Weak-extension operator E_{Δ} (Δ default theory):

$$E_{\Delta}(V) = \{I \in \mathcal{A}_2 \colon \mathcal{H}_{V,I}(\Delta) = \mathbf{t}\}$$

Fixpoints of E_Δ(V) — default models of weak extensions of Δ

4-valued truth assignment, approximating operator

- ► $\mathcal{H}^4_{(V,V'),I}$
- Approximating operator for $E_{\Delta} \mathcal{E}_{\Delta}$

 $\mathcal{E}_{\Delta}(V,V') = (\{I: \mathcal{H}^4_{(V,V'),I}(\Delta) \ge_t (\mathbf{f},\mathbf{t})\}, \{I: \mathcal{H}^4_{(V,V'),I}(\Delta) \ge_t (\mathbf{t},\mathbf{f})\})$

- ► Complete fixpoints of *E*_Δ models of weak extensions of Δ
- ▶ The least fixpoint of \mathcal{E}_{Δ} Kripke-Kleene fixpoint
 - approximates all default models of weak extensions of Δ

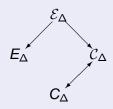
Stable operator

• The stable operator for \mathcal{E}_{Δ} :

$$\mathcal{C}_{\Delta}(V, V') = (C_{\Delta}(V'), C_{\Delta}(V))$$

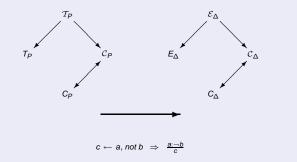
- C_{Δ} Guerreiro-Casanova operator Σ_{Δ}
- Fixpoints of C_{Δ} default models of Reiter's extensions
- ► Consistent fixpoints of C_Δ stationary extensions by Przymusinski
- Well-founded fixpoint of C_∆ (least fixpoint of C_∆ well-founded semantics of default logic by Baral and Subrahmanian)

Central role of \mathcal{E}_Δ



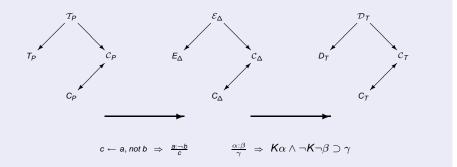
Connections

Strong parallels!



Connections

Strong parallels!



Thank you!