
Nonmonotonic logics—recent advances

Mirosław Truszczyński

Department of Computer Science
University of Kentucky

August 3-7, 2008

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 1 / 181

Introduction

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 2 / 181

McCarthy and Hayes on AI, 1969

[...] intelligence has two parts,

which we shall call the epistemological and the heuristic.
The epistemological part is the representation of the world in such a
form that the solution of problems follows from the facts expressed in
the representation. The heuristic part is the mechanism that on the
basis of the information solves the problem and decides what to do.

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 3 / 181

McCarthy and Hayes on AI, 1969

Knowledge representation and reasoning (KRR) — core of AI

◮ Epistemological part −→ modeling
◮ Knowledge representation
◮ Heuristic part −→ search for models or proofs
◮ Reasoning
◮ There is more to AI now – but KRR remains its core
◮ How to approach it?

◮ Use classical logic — it is “descriptively universal” and reasoning
can be automated
Early proposal of McCarthy

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 4 / 181

KRR

The goal (expanding and rephrasing Gelfond and Leone, 2002)

◮ To design and study languages to capture knowledge about:
environments, their entities and their behaviors

◮ To develop tools to support of reasoning from theories in these
languages

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 5 / 181

Challenges

With FOL – things are not so easy

◮ Incomplete information
(new information may invalidate earlier inferences – defeasible reasoning)

◮ Qualification problem
(we do not check for potato in tailpipe before starting the engine)

◮ Ramification problem
(describing side effects)

◮ Frame problem
(moving an object does not change its color)

◮ Rules with exceptions (defaults)
◮ Definitions – most notably inductive definitions

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 6 / 181

A typical scenario

Where to find Professor Jones?
Professor Jones likes to have a good espresso after lunch in a campus café. You need to talk to
her about a grant proposal. It is about 1:00pm and, under normal circumstances, Professor
Jones sticks to her daily routine.
Thus, you draw a plausible conclusion that she is presently enjoying her favorite drink. You
decide to go to the café and meet her there. As you get near the student center, where the cafe
is located, you see people streaming out of the building. One of them tells you about the fire
alarm that just went off.

The new piece of information invalidates the normality assumption and so the conclusion about

the present location of Professor Jones, too.

Key questions

◮ How to model such knowledge?
◮ How to reason with the representation?

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 7 / 181

A typical scenario

Where to find Professor Jones?
Professor Jones likes to have a good espresso after lunch in a campus café. You need to talk to
her about a grant proposal. It is about 1:00pm and, under normal circumstances, Professor
Jones sticks to her daily routine.
Thus, you draw a plausible conclusion that she is presently enjoying her favorite drink. You
decide to go to the café and meet her there. As you get near the student center, where the cafe
is located, you see people streaming out of the building. One of them tells you about the fire
alarm that just went off.

The new piece of information invalidates the normality assumption and so the conclusion about

the present location of Professor Jones, too.

Key questions

◮ How to model such knowledge?
◮ How to reason with the representation?

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 7 / 181

Normative statements, defaults

Professors normally teach (or, professors teach by default)

◮ How to formalize this statement?
◮ p → t

Not quite right, normality not reflected

◮ p ∧ ¬ab→ t?
Not quite right, abnormality must be established

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 8 / 181

Normative statements, defaults

Indeed ...

◮ p ∧ ¬ab ⊃ t
◮ Given p, can we derive t?
◮ No - need to know about normality/abnormality of p

◮ {p, t}, {p, t , ab} and {p, ab} are models
◮ cannot infer t

◮ Thus, classical logics are not best equipped for the task!!

Change of semantics needed

◮ For instance: minimal models wrt ab
◮ {p, t}— the only model left
◮ t follows!!

◮ Circumscription by McCarthy

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 9 / 181

Normative statements, defaults

Indeed ...

◮ p ∧ ¬ab ⊃ t
◮ Given p, can we derive t?
◮ No - need to know about normality/abnormality of p

◮ {p, t}, {p, t , ab} and {p, ab} are models
◮ cannot infer t

◮ Thus, classical logics are not best equipped for the task!!

Change of semantics needed

◮ For instance: minimal models wrt ab
◮ {p, t}— the only model left
◮ t follows!!

◮ Circumscription by McCarthy

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 9 / 181

Planning

How to move blocks around?

◮ Find a plan!
◮ Blocks on the table are arranged in stacks
◮ They need to be rearranged into different stacks
◮ At each step

◮ only top block in each stack can be moved
◮ can be placed on top of another stack or on the table

◮ How to describe prerequisites for actions and their effects?
qualification problem, ramification problem

◮ How to describe what changes when actions are executed and
what does not!!
frame problem

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 10 / 181

Planning

Games and puzzles

◮ Missionaries and cannibals
◮ 15-puzzle

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 11 / 181

Constraints

How to find a good route?

◮ Given:
◮ a set of places to visit
◮ the set of pairs of places that have direct connections

◮ Find a closed route that takes you through each place exactly
once

◮ Hamiltonian cycle problem
◮ Traveling salesman problem
◮ Defining the concept of reachability is hard!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 12 / 181

Constraints

More generally, combinatorial search problems

◮ Propositional satisfiability
◮ Graph problems (coloring, independent sets, cliques)
◮ Combinatorial optimization (largest size clique)
◮ Sudoku

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 13 / 181

Back to “Professors normally teach”

Another formalism: LP with stable models

◮ t ← p,not ab
◮ Together with p, there is one stable model: {p, t}
◮ Stable logic programming (answer-set programming) by Gelfond

and Lifschitz

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 14 / 181

Nonmonotonicity

In each case, learning ab defeats earlier conclusion!

◮ {p ∧ ¬ab ⊃ t , p, ab}
◮ One minimal model: {p,ab}
◮ {t ← p,not ab. p. ab.}
◮ One stable model: {p,ab}

Not what happens in classical logics where ...

◮ If T |= ϕ and T ⊆ T ′, then T ′ |= ϕ

◮ Monotonicity of classical logics
◮ Undesirable aspect of classical logics (from KR perspective)
◮ Difficulty in modeling incomplete information and defeasible

reasoning

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 15 / 181

Nonmonotonicity

In each case, learning ab defeats earlier conclusion!

◮ {p ∧ ¬ab ⊃ t , p, ab}
◮ One minimal model: {p,ab}
◮ {t ← p,not ab. p. ab.}
◮ One stable model: {p,ab}

Not what happens in classical logics where ...

◮ If T |= ϕ and T ⊆ T ′, then T ′ |= ϕ

◮ Monotonicity of classical logics
◮ Undesirable aspect of classical logics (from KR perspective)
◮ Difficulty in modeling incomplete information and defeasible

reasoning

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 15 / 181

Non-monotonic logics

Proposed in response to challenges of KRR

◮ Language of logic with non-classical semantics
◮ Model preference

◮ circumscription (McCarthy 1977)

◮ Fixpoint conditions defining belief sets
◮ default logic (Reiter 1980)
◮ autoepistemic logic (Moore 1984)
◮ logic programming with stable-model semantics (more manageable

fragment of default logic) (Gelfond-Lifschitz, 1988)
◮ ID-logic (Denecker 1998, 2000; Denecker-Ternovska 2004)

◮ Emphasize both modeling and reasoning

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 16 / 181

Introduction to default logic

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 17 / 181

Introduction to default logic

Default

◮ d = ϕ : ψ1,...,ψm
ϑ

◮ ϕ — premise; notation: p(d)
◮ ϑ — consequent; notation: c(d)
◮ ψ1, . . . , ψm — justifications; notation: j(d) = {ψ1, . . . , ψm}

◮ Interpretation
◮ if ϕ has been derived and all ψi are consistent, conclude ϑ
◮ like an inference rule ϕ

ϑ
modulo exceptions ¬ψi

◮ [ϕ : ψ1,...,ψm
ϑ

] := ϕ
ϑ

◮ [d] and [D] (for a set of defaults)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 18 / 181

Example

Defaults

◮

p : ¬q
r

p : ¬r ,¬s
q

r : ¬s
s

◮ The monotone rules (d → [d])

p
r

p
q

r
s

◮ Exceptions
q r , s s

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 19 / 181

Introduction to default logic

Default theory

◮ A pair of sets (D,W):
◮ D — a set of defaults
◮ W — a set of initial assumptions

◮ Semantics! What does a default theory entail?

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 20 / 181

Example

Default theory

◮ W = {p}

D =
{

p:¬q
r , p:¬r ,¬s

q , r :¬s
s

}

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 21 / 181

Defaults in a context

ϕ : ψ1, . . . , ψm/ϑ is S-enabled if

◮ S 6⊢ ¬ψi , 1 ≤ i ≤ m
◮ DS

◮ [DS] — for the corresponding monotone rules

ϕ : ψ1, . . . , ψm/ϑ is S-applicable if

◮ S 6⊢ ¬ψi , 1 ≤ i ≤ m
◮ S ⊢ ϕ
◮ D(S)

◮ (S-generating)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 22 / 181

Defaults in a context

ϕ : ψ1, . . . , ψm/ϑ is S-enabled if

◮ S 6⊢ ¬ψi , 1 ≤ i ≤ m
◮ DS

◮ [DS] — for the corresponding monotone rules

ϕ : ψ1, . . . , ψm/ϑ is S-applicable if

◮ S 6⊢ ¬ψi , 1 ≤ i ≤ m
◮ S ⊢ ϕ
◮ D(S)

◮ (S-generating)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 22 / 181

Reasoning with default theories

Make assumptions

◮ Select a context
◮ Justify the selection

How?

◮ Use consequents of S-applicable defaults together with W to
derive S by means of propositional logic

◮ Use “monotone” parts of S-enabled defaults and propositional
logic to derive S from W

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 23 / 181

Reasoning with default theories

Make assumptions

◮ Select a context
◮ Justify the selection

How?

◮ Use consequents of S-applicable defaults together with W to
derive S by means of propositional logic

◮ Use “monotone” parts of S-enabled defaults and propositional
logic to derive S from W

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 23 / 181

Weak extensions (expansions) of (D,W)

Use S-applicable defaults

◮ Formally:
S = Cn(W ∪ c(D(S)))

◮ Circular justifications
◮ W = ∅
◮ D = { p : q

p }
◮ S1 = Cn(∅); D(S1) = ∅; all checks: c(D(S1)) = ∅
◮ S2 = Cn(p); D(S2) = D; all checks: c(D(S2)) = {p}

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 24 / 181

Extensions of (D,W)

Use S-enabled defaults

◮ Formally:
S = Cn[DS](W)

◮ No circularity
◮ W = ∅
◮ D = { p : q

p }
◮ S1 = Cn(∅); DS1

= ∅; all checks
◮ S2 = Cn(p); DS2

= { p : q
p }; [DS2

] = { p
p}; does not work

the rule p
p will never be applied

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 25 / 181

Extensions of (D,W)

A larger example

◮ W = {p}

D =
{

p:¬q
r , p:¬r ,¬s

q , r :¬s
s

}

◮ Exactly one extension: S = Cn(p,q)

◮ Default proofs w.r.t. S use:

p,
p
q

and
r
s

◮ Exactly the consequences of p and q can be derived!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 26 / 181

Extensions of (D,W)

A larger example

◮ W = {p}

D =
{

p:¬q
r , p:¬r ,¬s

q , r :¬s
s

}

◮ S = Cn(p, r) is not an extension
◮ Default proofs w.r.t. S use

p,
p
r

and
r
s

◮ Can prove s even though not assumed!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 27 / 181

Extensions of (D,W)

Reiter’s original definition

◮ Let (D,W) be a default theory. For every set S, there is a least set
U such that:

◮ W ⊆ U
◮ Cn(U) = U
◮ Whenever ϕ:ψ1,...,ψm

ϑ
is a default rule in D, ϕ ∈ U and

¬ψ1, . . . ,¬ψm /∈ Cn(S) then ϑ ∈ U

◮ Denote this set by Γ(D,W)(S)

◮ (Reiter, 1980) S is an extension of (D,W) if

S = Γ(D,W)(S)

◮ Connection: Γ(D,W)(S) = Cn[DS](W)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 28 / 181

An application

Modeling inertia (change requires an action)

◮ Modeling inertia (change requires an action)

in_location(X ,L,T) : ¬abnormal(X ,T)

in_location(X ,L,T + 1)

move(X ,L1,L2,T) ⊃ in_location(X ,L2,T + 1)

move(X ,L1,L2,T) ⊃ abnormal(X ,T)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 29 / 181

Default Logic

Properties

◮ If S is an extension of (D,W), then

S = Cn(W ∪ c(D(S)))

◮ Weak extensions are extensions
◮ Cn[D(·)](W) and Γ(D,W)(·) are antimonotone

◮ Fixpoints of Cn[D(·)] and Γ(D,W)(·) form an antichain
◮ Extensions of a default theory form an antichain

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 30 / 181

Normal default logic

Normal defaults and normal default theories

◮ A normal default is a default of the form:
ϕ : ψ

ψ

◮ (D,W) is normal if all defaults in D are normal
◮ A normal default theory always has an extension
◮ If (D,W) is normal and W is consistent, then all extensions of

(D,W) are consistent
◮ If (D,W) is a normal default theory and T1 and T2 are distinct

extensions of (D,W), then T1 ∪ T2 is inconsistent
◮ Let D1 and D2 be sets of normal defaults. If T is an extension of

(D1,W) then there is T such that T is an extension of
(D1 ∪ D2,W) and T1 ⊆ T
Semimonotonicity

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 31 / 181

Simple application

Closed World Assumption

◮ Let W be a propositional theory. Define:

CWA(W) = Cn(W ∪ {¬p : p is an atom and W 6⊢ p})

◮ W is CWA-consistent if CWA(W) is consistent
◮ CWA(W) is complete
◮ CWA(W) may be inconsistent (consider W = {a ∨ b})
◮ If W is a consistent Horn theory then W is CWA-consistent.

Moreover, CWA(W) is precisely the theory of the least (w/r to
inclusion) model of W

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 32 / 181

CWA, cont’d

CWA and NDL

◮ Define:

Dcwa =

{

: ¬p
¬p

: p — an atom
}

◮ W is CWA-consistent if and only if
◮ W is consistent, and
◮ (Dcwa,W) has a unique extension

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 33 / 181

Reasoning tasks

Given a default theory (D,W) and a formula ϕ (in the last three)

EXISTENCE Decide whether (D,W) has an extension

IN-SOME Decide whether ϕ is in some extension for (D,W)
(credulous reasoner model)

NOT-IN-ALL Decide whether there is an extension of (D,W)
not containing ϕ

IN-ALL Decide whether ϕ is in all extensions of (D,W)
(skeptical reasoner model)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 34 / 181

Complexity

Results

◮ EXISTENCE, IN-SOME and NOT-IN-ALL are ΣP
2 -complete

◮ IN-ALL is ΠP
2 -complete

◮ For normal default theories, IN-SOME and NOT-IN-ALL are
ΣP

2 -complete, and IN-ALL is ΠP
2 -complete

◮ The problem of deciding whether a finite default theory (D,W)
possesses at least one consistent extension is ΣP

2 -complete

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 35 / 181

Importance of default logic

Generality and change of perspective

◮ Generalizes Closed World Assumption
◮ Generalizes logic programming with stable model semantics
◮ Captures propositional circumscription
◮ Captures an important fragment of autoepistemic logic
◮ Changes the way logic is used in KRR

◮ extensions as opposed to proofs
◮ answer-set programming

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 36 / 181

Logic programing as answer-set programming

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 37 / 181

Some logic terminology

Language

◮ Constant, variable, function and predicate symbols
◮ Terms: strings built recursively from constant, variable and

function symbols
◮ c, X , f (c,X), f (f (c,X), f (X , f (X , c)))

◮ Atoms: built of predicate symbols and terms
◮ p(X , c, f (a,Y))

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 38 / 181

Horn logic programming

Horn clause

◮ p ← q1, . . . ,qk

◮ where p, qi are atoms

◮ Clauses are universally quantified
◮ special sentences

◮ Intuitive reading: if q1, . . . ,qk then p

Horn program

◮ A collection of Horn clauses

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 39 / 181

Horn logic programming

Horn clause

◮ p ← q1, . . . ,qk

◮ where p, qi are atoms

◮ Clauses are universally quantified
◮ special sentences

◮ Intuitive reading: if q1, . . . ,qk then p

Horn program

◮ A collection of Horn clauses

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 39 / 181

More terminology

Herbrand model

◮ Ground terms: no variable symbols
◮ Herbrand universe: collection of all ground terms
◮ Ground atoms: atoms built of predicate symbols and ground terms
◮ p(a, c, f (a,a))

◮ Herbrand base: collection of all ground atoms
◮ Herbrand model: subset of an Herbrand base

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 40 / 181

Horn logic programming

Semantics

◮ Given by Herbrand models
◮ grnd(P): the set of all ground instances of clauses in P
◮ Thus, no difference between P and grnd(P)

◮ Key question: which ground facts hold in every Herbrand model of
P?

◮ Sufficient to restrict to Herbrand models contained in HB(P)
◮ Herbrand universe of P, HU(P)
◮ Herbrand base of P, HB(P)
◮ Ground atoms not in HB(P) are not true in all Herbrand models

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 41 / 181

We can say more

Least Herbrand model

◮ Every Horn program P has a least Herbrand model LM(P)
◮ the intersection of a set of Herbrand models of a Horn program is a

Herbrand model of the program
◮ HB(P) is an Herbrand model of P
◮ the intersection of all models is a least Herbrand model (and it is

containmed in HB(P))

◮ Single intended Herbrand model
◮ For a ground t , P |= p(t) if and only if p(t) ∈ LM(P)

◮ For ground t , if P 6|= p(t), defeasibly conclude ¬p(t)
◮ Closed World Assumption (CWA)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 42 / 181

Computing with Horn programs

What do they specify, what can they express?

◮ A Horn program P specifies a subset X of the Herbrand universe
for P, HU(P), if for some predicate symbol p occurring in P we
have:

X = {t ∈ HU(P) : p(t) ∈ LM(P)}

◮ Finite Horn programs specify precisely the r.e. sets and relations
Smullyan, 1968, Andreka and Nemeti, 1978

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 43 / 181

Computing with Horn programs

Possible issues?

◮ Function symbols necessary!
◮ List constructor [·|·] used to define higher-order objects
◮ Terms - basic data structures
◮ Queries (goals):

◮ ?p(t) - is p(t) entailed?
◮ ?p(X) - for what ground t , is p(t) entailed?

◮ Proofs provide answers
◮ SLD-resolution
◮ Unification - basic mechanism to manipulate data structures
◮ Extensive use of recursion
◮ Leads to Prolog

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 44 / 181

Example

Manipulating lists: append and reverse

append([],X ,X).
append([X |Y],Z , [X |T]) ← append(Y ,Z ,T).

reverse([], []).
reverse([X |Y],Z)← append(U, [X],Z), reverse(Y ,U).

◮ both relations defined recursively
◮ terms represent complex objects: lists, sets, ...

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 45 / 181

Example, cont’d

Playing with reverse

◮ Problem: reverse list [a,b, c]
◮ Ask query ?− reverse([a, b, c],X).
◮ A proof of the query yields a substitution: X = [c, b, a]
◮ The substitution constitutes an answer

◮ Query ?− reverse([a|X], [b, c,d ,a]) returns X = [d , c,b]

◮ Query ?− reverse([a|X], [b, c,d ,b]) returns no substitutions
(there is no answer)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 46 / 181

Example, cont’d

Observations

◮ Techniques to search for proofs — the key
◮ Understanding of the resolution mechanism is important
◮ It may make a difference which logically equivalent form is used:

◮ reverse([X |Y],Z)← append(U, [X],Z), reverse(Y ,U).
◮ reverse([X |Y],Z)← reverse(Y ,U), append(U, [X],Z).
◮ termination vs. non-termination for query:

?− reverse([a|X], [b, c, d , b])

◮ Is it truly knowledge representation?
◮ is it truly declarative?
◮ implementations are not!

◮ Nonmonotonicity quite restricted

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 47 / 181

Negation in the body

Why negation?

◮ Natural linguistic concept
◮ Facilitates knowledge representation (declarative descriptions and

definitions
◮ Needed for modeling convenience
◮ Clauses of the form:

p(~X)← q1(~X1), . . . ,qk (~Xk),not r1(~Y1), . . . ,not rl(~Yl)

◮ Things get more complex!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 48 / 181

Semantics of programs with negation

Observations

◮ Still Herbrand models
◮ Still restricted to HB(P)

◮ But — usually no least Herbrand model!
◮ Program

a← not b
b ← not a

has two minimal Herbrand models: M1 = {a} and M2 = {b}.
◮ Identifying a single intended model a major issue

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 49 / 181

Semantics of programs with negation

Great Logic Programming Schism

◮ Single intended model approach
◮ continue along the lines of Prolog

◮ Multiple intended model approach
◮ branch into answer-set programming

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 50 / 181

Single intended model approach

“Better” Prolog

◮ Extensions of Horn logic programming
◮ Perfect semantics of stratified programs
◮ 3-val well-founded semantics for (arbitrary) programs

◮ Top-down computing based on unification and resolution
◮ XSB – David Warren at SUNY Stony Brook
◮ Will come back to it

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 51 / 181

Multiple intended models

Answer-set programming

◮ Semantics assigns to a program not one but many intended
models!

◮ for instance, all stable or supported models (to be introduced soon)
◮ How to interpret these semantics?

◮ skeptical reasoning: a ground atom is cautiously entailed if it
belongs to all intended models

◮ intended models represent different possible states of the world,
belief sets, solutions to a problem

◮ Nonmonotonicity shows itself in an essential way
◮ as in default logic

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 52 / 181

Normal logic programming

Preliminary observations and comments

◮ Logic programs with negation
◮ Still interested only in Herbrand models
◮ Thus, enough to consider propositional case
◮ Supported model semantics
◮ Stable model semantics
◮ Connection to propositional logic (Clark’s completion, tightness,

loop formulas)
◮ Kripke-Kleene and well-founded semantics
◮ Strong and uniform equivalence

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 53 / 181

Normal logic programming — propositional case

Syntax

◮ Propositional language over a set of atoms At (possibly infinite)
◮ Clause r

a← b1, . . . ,bm,not c1, . . . ,not cn

◮ a, bi , cj are atoms
◮ a is the head of the clause: hd(r)
◮ literals bi , not cj form the body of the rule: bd(r)
◮ {b1, . . . ,bm} - positive body bd+(r)
◮ {c1, . . . , cn} - negative body bd−(r)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 54 / 181

One-step provability operator

Basic tool in LP van Emden, Kowalski 1976

◮ Operator on interpretations (sets of atoms)
◮ TP(I) = {hd(r) : I |= bd(r)}
◮ If P is Horn, TP is monotone

◮ Let I ⊆ J
◮ Let bd(r) = b1, . . . ,bm (no negation!)
◮ If I |= bd(r) than J |= bd(r)
◮ Thus, TP(I) ⊆ TP(J)
◮ Least fixpoint of TP exists and coincides with the least Herbrand

model of P
◮ In general, not the case (due to negation)

◮ ∅ |= not a
◮ but {a} 6|= not a

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 55 / 181

Supported-model semantics

Definition and some observations

◮ M ⊆ At is a supported model of P if TP(M) = M
◮ Supported models are indeed models

◮ let M |= bd(r)
◮ then hd(r) ∈ TP(M)
◮ and so, hd(r) ∈ M

◮ Supported models are subsets of At(P) (the Herbrand base of P)
◮ Thus, they are Herbrand models

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 56 / 181

Supported models - example

Program p ← not q

◮ One supported model: M1 = {p}
◮ M2 = {q} - not supported (but model)
◮ p “follows”
◮ If q included in the program (more exactly: a rule q ←)

◮ Just one supported model: M1 = {q}.
◮ p does not ‘follow”
◮ nonmonotonicity

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 57 / 181

Supported models - example

Program p ← p

◮ Two supported models: M1 = ∅ and M2 = {p}
◮ The second one is self-supported (circular justification)
◮ A problem for KR

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 58 / 181

Clark’s completion

Rules as implications

◮ bd∧(r) the conjunction of all literals in the body of r
with all not c replaced with ¬c

◮ cmpl←(P) = {bd∧(r)→ hd(r) : r ∈ P}

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 59 / 181

Clark’s completion

Rules as definitions

◮ Notation: defP(a) =
∨

{bd∧(r) : hd(r) = a}
◮ Note: if a not the head of any rule in P, defP(a) = ⊥

◮ cmpl→(P) = {a→ defP(a) : a ∈ At}

◮ cmpl(P) = cmpl←(P) ∪ cmpl→(P)

◮ Note: if a /∈ At(P), cmpl(P) |= ¬a

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 60 / 181

Clark’s completion

Connection to supported models

◮ A set M ⊆ At is a supported model of a program P if and only if M
is a model (in a standard sense) of cmpl(P)

◮ Connection to SAT
◮ Allows us to use SAT solvers to compute supported models of P

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 61 / 181

Stable model semantics

Supported models of interest, but ...

◮ Some supported models based on circular arguments
◮ Some more stringent bases for selecting intended models needed

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 62 / 181

Stable model semantics

Gelfond-Lifschitz reduct

◮ P — logic program
◮ M — set of atoms
◮ Reduct PM

◮ for each a ∈ M remove rules with not a in the body
◮ remove literals not a from all other rules

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 63 / 181

Stable model semantics

Definition through reduct

◮ Reduct PM is a Horn program
◮ It has the least model LM(PM)

◮ M is a stable model of P if

M = LM(PM)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 64 / 181

Stable model semantics

And now through Gelfond-Lifschitz operator

◮ GLP(M) = LM(PM)

◮ M is a stable model if and only if

M = GLP(M)

◮ GLP is antimonotone
◮ For M ⊆ N:

GLP(N) ⊆ GLP(M)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 65 / 181

Stable models — examples

Multiple stable models

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

◮ Two stable models: M1 = {p,q} and M2 = {s}

No stable models

p ← not p

◮ No stable models!!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 66 / 181

Stable models — examples

Multiple stable models

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

◮ Two stable models: M1 = {p,q} and M2 = {s}

No stable models

p ← not p

◮ No stable models!!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 66 / 181

Stable models — properties

Stable models are models!

◮ Let M be a stable model
◮ M is a model of all rules that are removed from the program when

forming the reduct
◮ M is a model of every rule that contributes to the reduct
◮ Indeed, each such rule is subsumed by a rule in the reduct and M

satisfies all rules in the reduct

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 67 / 181

Stable models — properties

Stable models are minimal models!

◮ Let N be a stable model and M a model s.t. M ⊆ N
◮ Then

N = GLP(N) ⊆ GLP(M) ⊆ M

◮ Thus, N ⊆ M and so N = M
◮ The minimality of N follows
◮ Stable models form an antichain!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 68 / 181

Stable models — properties

Lemma: If M model of P, GLP(M) ⊆ M

◮ Since M model of P, then M is a model of PM

◮ a← b1, . . . ,bm - a rule in reduct
◮ a← b1, . . . ,bm,not c1, . . . ,not cn - the original rule in P
◮ M satisfies the latter, and it satisfies every not ci (as ci 6∈ M)
◮ Thus, M satisfies the reduct rule

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 69 / 181

Stable models — properties

Connection to supported models

◮ If M is a stable model of P then it is a supported model of P
◮ Let M be a stable model of P
◮ Then M model of P and so, TP(M) ⊆ M
◮ r = a← b1, . . . ,bm,not c1, . . . ,not cn - a rule in P such that

M |= bd(r)
◮ Then r ′ = a← b1, . . . ,bm belongs to the reduct PM

◮ And M |= bd(r ′)
◮ Since M is a model of PM , a ∈ M
◮ Hence, TP(M) ⊆ M and so, M = TP(M)

◮ That is, M is supported!!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 70 / 181

Fages Lemma Fages 1994

But ...

◮ The converse not true, in general (as it should not be)

Counterexample

◮ p ← p
◮ {p} is supported but not stable
◮ Positive dependency of p on itself is a problem

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 71 / 181

Fages Lemma Fages 1994

But ...

◮ The converse not true, in general (as it should not be)

Counterexample

◮ p ← p
◮ {p} is supported but not stable
◮ Positive dependency of p on itself is a problem

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 71 / 181

Fages Lemma

Positive dependency graph G+(P)

◮ Atoms of P are vertices
◮ (a,b) is an edge in G+(P) if for some r ∈ P: hd(r) = a,

b ∈ bd+(r)

Tight programs

◮ P is tight if G+(P) is acyclic
◮ Alternatively, if there is a labeling of atoms with non-negative

integers (a 7→ λ(a)) s.t.
◮ for every rule r ∈ P

λ(hd(r)) > max{λ(b) : b ∈ bd+(r)}

◮ Connection to topological ordering of positive dependency graphs
ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 72 / 181

Fages Lemma

Positive dependency graph G+(P)

◮ Atoms of P are vertices
◮ (a,b) is an edge in G+(P) if for some r ∈ P: hd(r) = a,

b ∈ bd+(r)

Tight programs

◮ P is tight if G+(P) is acyclic
◮ Alternatively, if there is a labeling of atoms with non-negative

integers (a 7→ λ(a)) s.t.
◮ for every rule r ∈ P

λ(hd(r)) > max{λ(b) : b ∈ bd+(r)}

◮ Connection to topological ordering of positive dependency graphs
ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 72 / 181

Fages Lemma

The statement — finally

◮ If P is tight then every supported model is stable
◮ Intuitively, circular support not possible

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 73 / 181

Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

Graph G+(P)

P is tight

◮ {p,q} and {s} are supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Thus, they are stable (which we verified directly earlier)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 74 / 181

Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

Graph G+(P)

p qr

P is tight

◮ {p,q} and {s} are supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Thus, they are stable (which we verified directly earlier)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 74 / 181

Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

Graph G+(P)

p qr

P is tight

◮ {p,q} and {s} are supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Thus, they are stable (which we verified directly earlier)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 74 / 181

Fages Lemma

Proof

◮ Let P be tight and M be its supported model
◮ Then M is a model of PM

◮ Let N be a model of PM

◮ Claim: for every k , if a ∈ M and λ(a) < k , then a ∈ N
◮ Holds for k = 0 (trivially)
◮ Let a ∈ M and λ(a) = k
◮ Since M supported, there is r ∈ P such that a = hd(r) and

M |= bd(r)
◮ In particular, bd+(r) ⊆ M and so, bd+(r) ⊆ N (by I.H.)
◮ Since M |= bd(r), M contributes to the reduct
◮ Since N is a model of PM , a ∈ N
◮ It follows that M = LM(PM)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 75 / 181

A generalization Erdem and Lifschitz, 2000

Relativized tightness

◮ Let X ⊆ At(P)

◮ P is tight on X if the program consisting of rules r such that
bd+(r) ⊆ X is tight

Generalization

◮ If P is tight on X and M is a supported model of P such that
M ⊆ X , then M is stable

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 76 / 181

A generalization Erdem and Lifschitz, 2000

Relativized tightness

◮ Let X ⊆ At(P)

◮ P is tight on X if the program consisting of rules r such that
bd+(r) ⊆ X is tight

Generalization

◮ If P is tight on X and M is a supported model of P such that
M ⊆ X , then M is stable

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 76 / 181

Generalized Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s
p ← r

Graph G+(P)

P is not tight

◮ {p,q} and {s} are still supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Since P is tight on each of them, they are stable

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 77 / 181

Generalized Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s
p ← r

Graph G+(P)

p qr

P is not tight

◮ {p,q} and {s} are still supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Since P is tight on each of them, they are stable

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 77 / 181

Generalized Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s
p ← r

Graph G+(P)

p qr

P is not tight

◮ {p,q} and {s} are still supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Since P is tight on each of them, they are stable

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 77 / 181

Loops and loop formulas Lin and Zhao, 2002

External support formula for Y ⊆ At(P)

◮ For a rule r :
◮ bd∧(r) the conjunction of all literals in the body of r

with all not c replaced with ¬c

◮ ESP(Y) the disjunction of bd∧(r) for all r ∈ P st:
◮ hd(r) ∈ Y
◮ bd+(r) ∩ Y = ∅

Observations

◮ ESP(∅) = ⊤

◮ ESP({a}) = defP(a)
cf. Clark’s completion

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 78 / 181

Loops and loop formulas Lin and Zhao, 2002

External support formula for Y ⊆ At(P)

◮ For a rule r :
◮ bd∧(r) the conjunction of all literals in the body of r

with all not c replaced with ¬c

◮ ESP(Y) the disjunction of bd∧(r) for all r ∈ P st:
◮ hd(r) ∈ Y
◮ bd+(r) ∩ Y = ∅

Observations

◮ ESP(∅) = ⊤

◮ ESP({a}) = defP(a)
cf. Clark’s completion

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 78 / 181

A characterization of stable models

The following conditions are equivalent

◮ X is a stable model of P
◮ X is a model of cmpl←(P) ∪ {Y∧ → ESP(Y) : Y ⊆ At(P)}

◮ X is a model of cmpl←(P) ∪ {Y∨ → ESP(Y) : Y ⊆ At(P)}

◮ OK to replace cmpl←(P) with cmpl(P)
◮ cmpl→(P) ⊆ {Y∧ → ESP(Y) : Y ⊆ At(P)}
◮ cmpl→(P) ⊆ {Y∨ → ESP(Y) : Y ⊆ At(P)}

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 79 / 181

Loops

Definition

◮ A loop is a set Y ⊆ At(P) that induces in G+(P) a strongly
connected subgraph

◮ In particular, all singleton sets are loops

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 80 / 181

Loops — example

Program P

p ← q,not r
q ← p
r ← not p

Graph G+(P)

◮ {p}, {q}, {r}, {p,q}
are loops

◮ {p,q, r} is not!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 81 / 181

Loops — example

Program P

p ← q,not r
q ← p
r ← not p

Graph G+(P)

rp q

◮ {p}, {q}, {r}, {p,q}
are loops

◮ {p,q, r} is not!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 81 / 181

Loop Theorem

The following conditions are equivalent

◮ X is a stable model of P
◮ X is a model of cmpl←(P) ∪ {Y∧ → ESP(Y) : Y – a loop}
◮ X is a model of cmpl←(P) ∪ {Y∨ → ESP(Y) : Y – a loop}

◮ OK to replace cmpl←(P) with cmpl(P)
◮ Singleton sets are loops!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 82 / 181

Program inconsistency

Some programs have no stable nor supported models

◮ Sufficient conditions for the existence of stable models
◮ 4-val supported and stable models

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 83 / 181

Sufficient conditions

General dependency graph G(P)

◮ Atoms of P are vertices
◮ (a,b) is an edge in P if for some r ∈ P: hd(r) = a, b ∈ bd(r)
◮ If b ∈ bd+(r) — edge is positive
◮ If b ∈ bd−(r) — edge is negative

A propositional program P is

◮ Call-consistent: if G(P) has no odd cycles (cycles with an odd
number of negative edges)

◮ Stratified: if G(P) has no paths with infinitely many negative
edges

◮ in particular, no cycles with a negative edge (for finite programs
both conditions are equivalent)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 84 / 181

Sufficient conditions

General dependency graph G(P)

◮ Atoms of P are vertices
◮ (a,b) is an edge in P if for some r ∈ P: hd(r) = a, b ∈ bd(r)
◮ If b ∈ bd+(r) — edge is positive
◮ If b ∈ bd−(r) — edge is negative

A propositional program P is

◮ Call-consistent: if G(P) has no odd cycles (cycles with an odd
number of negative edges)

◮ Stratified: if G(P) has no paths with infinitely many negative
edges

◮ in particular, no cycles with a negative edge (for finite programs
both conditions are equivalent)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 84 / 181

Sufficient conditions

Results

◮ If a finite logic program is call-consistent, it has a stable model
◮ If a program is stratified it has a unique stable model

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 85 / 181

Equivalence — logics behind nonmonotonic logics

What do I mean?

◮ Logic allows us to manipulate theories
◮ Tautologies can be added or removed without changing the

meaning
◮ Consequences of formulas in theories can be added or removed

without changing the meaning
◮ {p, p ⊃ q} the same as {p, p ⊃ q, q}
◮ one can always be replaced with another (within any larger context)

◮ Equivalence for replacement — logical equivalence necessary
and sufficient

◮ Is there a logic which captures such manipulation with theories in
nonmonotonic systems?

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 86 / 181

Is it important?

Query optimization

◮ Compute answers to a query Q (program) from a knowledge base
KB (another program)
reason from Q ∪ KB

◮ Rewrite Q into an equivalent query Q′, which can be processed
more efficiently
reasoning from Q′ ∪ KB easier

◮ When are two queries equivalent?
◮ If Q ∪ KB and Q′ ∪ KB have the same meaning

not quite what we want — knowledge-base dependent
◮ If Q ∪ KB and Q′ ∪KB have the same meaning for every knowledge

base KB
better — knowledge-base independent

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 87 / 181

Towards modular logic programming

Equivalence of programs

◮ P and Q are equivalent if they have the same models

Nonmonotonic equivalence of programs

◮ P and Q are stable-equivalent if they have the same stable models

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 88 / 181

Towards modular logic programming

Equivalence of programs

◮ P and Q are equivalent if they have the same models

Nonmonotonic equivalence of programs

◮ P and Q are stable-equivalent if they have the same stable models

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 88 / 181

Towards modular logic programming

Equivalence for replacement

◮ Equivalence for replacement — for every program R, programs
P ∪ R and Q ∪ R have the same stable models

◮ Commonly known as strong equivalence
Lifschitz, Pearce, Valverde 2001; Lin 2002; Turner 2003; Eiter, Fink 2003; Eiter, Fink,

Tompits, Woltran, 2005; T_ 2006; Woltran 2008

◮ Different than equivalence
◮ {p← not q} and {q ← not p}
◮ The same models but different meaning

◮ Different than stable-equivalence
◮ P = {p} and Q = {p← not q}
◮ The same stable models; {p} is the only stable model in each case
◮ But, P ∪ {q} and Q ∪ {q} have different stable models!

({p, q} and {q}, respectively)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 89 / 181

When are two programs strongly equivalent?

Se-model characterization

◮ A pair (X ,Y) of sets of atoms is an se-model of a program P if
◮ X ⊆ Y
◮ Y |= P
◮ X |= PY

◮ SE(P) set of se-models of P
◮ Logic programs P and Q are strongly equivalent iff they have the

same se-models (SE(P) = SE(Q))
◮ A similar concept characterizes strong equivalence of default

theories
Turner 2003

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 90 / 181

An interesting variant

Uniform equivalence

◮ Programs P and Q are uniformly equivalent if for every set D of
facts (rules with empty body) P ∪D and Q ∪ D have the same
stable models

◮ Relevant for DB query optimization
◮ Different than other types of equivalence discussed here

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 91 / 181

When are two programs uniformly equivalent?

Se-model characterization

◮ Programs P and Q are uniformly equivalent iff
◮ for every Y ⊆ At , Y is a model of P if and only if Y is a model of Q
◮ for every (x , y) ∈ SE(P) such that X ⊂ Y , there is U ⊆ At such that

X ⊆ U ⊂ Y and (U,Y) ∈ SE(Q)
◮ for every (x , y) ∈ SE(Q) such that X ⊂ Y , there is U ⊆ At such that

X ⊆ U ⊂ Y and (U,Y) ∈ SE(P)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 92 / 181

When are two programs uniformly equivalent?

Ue-model characterization

◮ A pair (X ,Y) of sets of atoms is a ue-model of a program P if it is
an se-model of P and

◮ For every se-model (X ′,Y) such that X ⊆ X ′, X ′ = X or X ′ = Y
◮ Finite logic programs P and Q are uniformly equivalent iff they

have the same ue-models
Eiter and Fink, 2003

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 93 / 181

General logic programs Ferraris and Lifschitz, 2005

Formulas

◮ Base: atoms and the symbol ⊥ (“false”)
◮ Connectives ∧, ∨ and→
◮ Shortcuts

◮ ¬F ::= F → ⊥
◮ ⊤ ::= ⊥ → ⊥
◮ F ↔ G ::= (F → G) ∧ (G → F)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 94 / 181

General logic programs

Positive and negative occurrences of atoms in formulas

◮ An occurrence of a in F is positive, if the # of implications with this
occurrence of a in antecedent is even

◮ Otherwise, it is negative
◮ An occurrence of a in F is strictly positive if no implication

contains this occurrence of a in the antecedent
◮ ¬F (that is, F → ⊥) has no strict occurrences of any atom.

◮ A head atom (of a formula) an atom with at least one strictly
positive occurrence

◮ In (¬p → q)→ (p ∨ ¬q):
◮ the first occurrence of p is negative
◮ the second occurrence of p is strictly positive
◮ both occurrences of q are negative

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 95 / 181

Stable-model semantics

Reduct of a formula F with respect to a set X of atoms

◮ The formula F X obtained by replacing in F each maximal
subformula of F that is not satisfied by X with ⊥

Example: F = (¬p → q) ∧ (¬q → p) and X = {p}

◮ ¬p = p → ⊥, and X |= ¬p → q
◮ Thus: ¬p is a maximal subformula not satisfied by X
◮ ¬q = q → ⊥, X 6|= q, X |= ¬q
◮ Thus, q is a maximal subformula not satisfied by X
◮ Thus: F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p)

◮ Classically equivalent to p

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 96 / 181

Stable-model semantics

Reduct of a formula F with respect to a set X of atoms

◮ The formula F X obtained by replacing in F each maximal
subformula of F that is not satisfied by X with ⊥

Example: F = (¬p → q) ∧ (¬q → p) and X = {p}

◮ ¬p = p → ⊥, and X |= ¬p → q
◮ Thus: ¬p is a maximal subformula not satisfied by X
◮ ¬q = q → ⊥, X 6|= q, X |= ¬q
◮ Thus, q is a maximal subformula not satisfied by X
◮ Thus: F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p)

◮ Classically equivalent to p

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 96 / 181

Stable-model semantics

To facilitate computation of the reduct

◮ ⊥X = ⊥

◮ For a an atom, if a ∈ X , aX = a; otherwise, aX = ⊥

◮ If X |= F ◦G, (F ◦G)X = F X ◦GX ; otherwise, (F ◦G)X = ⊥ (◦
stands for any of ∧, ∨,→)

◮ If X |= F , (¬F)X = ⊥; otherwise,
(¬F)X = (F → ⊥) = (⊥ → ⊥) = ⊤

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 97 / 181

Stable-model semantics

Definition

◮ A set X of atoms is a stable model of a formula F if X is a minimal
model of F

Example: F = (¬p → q) ∧ (¬q → p), X = {p}

◮ F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p) (which is equivalent to p)
◮ X is a minimal model of F X , so a stable model

Example: F = (¬p → q) ∧ (¬q → p), X = {p, q}

◮ F X = (⊥ → q) ∧ (⊥ → p) (which is equivalent to ⊤)
◮ X is not a minimal model of F X , so not a stable model

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 98 / 181

Stable-model semantics

Definition

◮ A set X of atoms is a stable model of a formula F if X is a minimal
model of F

Example: F = (¬p → q) ∧ (¬q → p), X = {p}

◮ F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p) (which is equivalent to p)
◮ X is a minimal model of F X , so a stable model

Example: F = (¬p → q) ∧ (¬q → p), X = {p, q}

◮ F X = (⊥ → q) ∧ (⊥ → p) (which is equivalent to ⊤)
◮ X is not a minimal model of F X , so not a stable model

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 98 / 181

Stable-model semantics

Definition

◮ A set X of atoms is a stable model of a formula F if X is a minimal
model of F

Example: F = (¬p → q) ∧ (¬q → p), X = {p}

◮ F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p) (which is equivalent to p)
◮ X is a minimal model of F X , so a stable model

Example: F = (¬p → q) ∧ (¬q → p), X = {p, q}

◮ F X = (⊥ → q) ∧ (⊥ → p) (which is equivalent to ⊤)
◮ X is not a minimal model of F X , so not a stable model

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 98 / 181

Stable-model semantics

Properties

◮ If X is a stable model of a formula F then X consists of head
atoms of F

◮ A least model of a Horn formula (conjunction of definite Horn
clauses given as implications) is a unique stable model of the
theory

◮ A set X is a stable model of a formula F ∧ ¬G if and only if X is a
stable model of F and X |= ¬G

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 99 / 181

Stable-model semantics

Strong equivalence

◮ Formulas F and F ′ are strongly equivalent if for every formula G,
F ∧G and F ′ ∧G have the same stable models

◮ (X ,Y) is an se-model of F if Y ⊆ At , X ⊆ Y , Y |= F and X |= F Y .
◮ The following conditions are equivalent:

◮ Formulas F and G are strongly equivalent
◮ For every set X of atoms, F X and GX are equivalent in classical

logic
◮ F and G have the same se-models
◮ F and G are equivalent in the logic here-and-there (details later)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 100 / 181

Stable-model semantics

Splitting

◮ Let F and G be formulas such that F does not contain any of the
head atoms of G

◮ A set X is a stable model of F ∧G iff there is a stable model Y of
F such that X is a stable model of G ∧

∧

Y

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 101 / 181

Multivalued semantics

2-input one-step operator ΦP

◮ Given two interpretations I and J

ΦP(I, J) = {hd(r) : r ∈ P, bd+(r) ⊆ I, bd−(r) ∩ J = ∅}

◮ ΦP(·, J) monotone
◮ ΦP(I, ·) antimonotone
◮ ΦP(I, I) = TP(I)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 102 / 181

Multivalued semantics

4-val interpretations

◮ Pairs (I, J) of interpretations
◮ Atoms in I are known and atoms in J are possible
◮ Give rise to 4 truth values

◮ If a ∈ I ∩ J , a is true
◮ If a /∈ I ∪ J , a is false
◮ If a ∈ J \ I, a is unknown
◮ If a ∈ I \ J , a is overdefined (inconsistent)

◮ (I, J) consistent if I ⊆ J

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 103 / 181

Multivalued semantics

4-val one-step provability operator

◮ TP(I, J) = (ΦP(I, J),ΦP (J, I))
◮ Precision (information) ordering:

(I, J)≤i (I ′, J ′) - if I ⊆ I ′ and J ′ ⊆ J
◮ TP monotone wrt ≤i

◮ (I, J)≤i (I ′J ′) ⇒ TP(I, J)≤iTP(I ′, J ′)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 104 / 181

4-val supported models

◮ (I, J) is a 4-val supported model of P if (I, J) = TP(I, J)

◮ (I, I) is a 4-val supported model iff I is a supported model
◮ The least 4-val supported model exists!

◮ TP is monotone and so has the least (wrt ≤i) fixpoint
◮ Moreover, it is consistent!

◮ Kripke-Kleene (Fitting) fixpoint or semantics: (KK t(P),KK p(P))

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 105 / 181

Well-founded semantics van Gelder, Ross, Schlipf, 1991

◮ 4-val Gelfond-Lifschitz operator
◮ GLP(I, J) = (GLP(J),GL(I))
◮ Also monotone wrt ≤i

◮ (I, J) is a 4-val stable model if GLP(I, J) = (I, J)

◮ M is a stable model of P if and only if (M,M) is a 4-val stable
model of P

◮ The least fixpoint of GL exists!! (by monotonicity)
◮ And is consistent
◮ Well-founded fixpoint (semantics): (WF t(P),WF p(P))

◮ For every stable model M of P

WF t(P) ⊆ M ⊆WF p(P)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 106 / 181

Logic here-and-there

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 107 / 181

Logic here-and-there, Heyting 1930

Syntax

◮ Connectives: ⊥, ∨, ∧,→
◮ Formulas - standard extension of atoms by means of

connectives
◮ ¬ϕ - shorthand for ϕ→ ⊥
◮ ϕ↔ ψ - shorthand for (ϕ→ ψ) ∧ (ψ → ϕ)

◮ Language Lht

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 108 / 181

Logic here-and-there

Why important?

◮ Disjunctive logic programs — special theories in Lht
◮ a1| . . . |ak ← b1, . . . ,bm, not c1, . . .not cn
◮ b1 ∧ . . . ∧ bm ∧ ¬c1 ∧ . . . ∧ ¬cn → c1 ∨ . . . ∨ cn

◮ General logic programs (Ferraris, Lifschitz) = theories in Lht
◮ answer-set semantics extends to general logic programs
◮ equilibrium models in logic ht
◮ the two coincide!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 109 / 181

Entailment in logic here-and-there

Ht-interpretations

◮ Pairs 〈H,T 〉, where H ⊆ T are sets of atoms
◮ Kripke interpretations with two worlds “here” and “there”

◮ H determines the valuation for “here”
◮ T determines the valuation for “there”

Kripke-model satisfiability in the world “here” |=ht

◮ 〈H,T 〉 6|=ht ⊥

◮ 〈H,T 〉 |=ht p if p ∈ H (for atoms only)
◮ 〈H,T 〉 |=ht ϕ ∧ ψ and 〈H,T 〉 |=ht ϕ ∨ ψ — standard recursion
◮ 〈H,T 〉 |=ht ϕ→ ψ if

◮ 〈H,T 〉 6|=ht ϕ or 〈H,T 〉 |=ht ψ
◮ T |= ϕ→ ψ (in standard propositional logic).

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 110 / 181

Entailment in logic here-and-there

Ht-interpretations

◮ Pairs 〈H,T 〉, where H ⊆ T are sets of atoms
◮ Kripke interpretations with two worlds “here” and “there”

◮ H determines the valuation for “here”
◮ T determines the valuation for “there”

Kripke-model satisfiability in the world “here” |=ht

◮ 〈H,T 〉 6|=ht ⊥

◮ 〈H,T 〉 |=ht p if p ∈ H (for atoms only)
◮ 〈H,T 〉 |=ht ϕ ∧ ψ and 〈H,T 〉 |=ht ϕ ∨ ψ — standard recursion
◮ 〈H,T 〉 |=ht ϕ→ ψ if

◮ 〈H,T 〉 6|=ht ϕ or 〈H,T 〉 |=ht ψ
◮ T |= ϕ→ ψ (in standard propositional logic).

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 110 / 181

Entailment in logic here-and-there

ht-model, ht-validity, ht-equivalence

◮ If 〈H,T 〉 |=ht ϕ - 〈H,T 〉 is an ht-model of ϕ
◮ ϕ is ht-valid if for every ht-model 〈H,T 〉, 〈H,T 〉 |= ϕ

◮ ϕ and ψ are ht-equivalent if they have the same ht−models

◮ ϕ and ψ are ht-equivalent iff ϕ↔ ψ is ht-valid

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 111 / 181

Proof theory

Natural deduction — sequents and rules

◮ Sequents Γ⇒ ϕ — “ϕ under the assumptions Γ”
◮ Introduction rules for ∧, ∨,→

Γ ⇒ ϕ ∆ ⇒ ψ

Γ,∆ ⇒ ϕ ∧ ψ

◮ Elimination rules for ∧, ∨,→

Γ ⇒ ϕ ∆ ⇒ ϕ→ ψ

Γ,∆ ⇒ ψ

◮ Contradiction
Γ ⇒ ⊥

Γ ⇒ ϕ

◮ Weakening
Γ ⇒ ϕ

Γ′ ⇒ ϕ
for all Γ′, Γ s.t. Γ

′
⊆ Γ

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 112 / 181

Proof theory

Axiom schemas

(AS1) ϕ⇒ ϕ
(AS2) ⇒ ϕ ∨ ¬ϕ (Excluded Middle)
(AS2′) ⇒ ¬ϕ ∨ ¬¬ϕ (Weak EM)
(AS2′′) ⇒ ϕ ∨ (ϕ→ ψ) ∨ ¬ψ (in between (AS2) and (AS2′)

Logics through natural deduction

Propositional logic (AS1), (AS2)
Intuitionistic logic (AS1)
Logic here-and-there (AS1),(AS2′′)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 113 / 181

Proof theory

Axiom schemas

(AS1) ϕ⇒ ϕ
(AS2) ⇒ ϕ ∨ ¬ϕ (Excluded Middle)
(AS2′) ⇒ ¬ϕ ∨ ¬¬ϕ (Weak EM)
(AS2′′) ⇒ ϕ ∨ (ϕ→ ψ) ∨ ¬ψ (in between (AS2) and (AS2′)

Logics through natural deduction

Propositional logic (AS1), (AS2)
Intuitionistic logic (AS1)
Logic here-and-there (AS1),(AS2′′)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 113 / 181

Bringing the two together

Soundness and completeness

◮ A formula is a theorem of ht if and only if it is ht-valid

In particular

◮ ϕ and ψ are ht-equivalent iff⇒ ϕ↔ ψ is a theorem of ht

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 114 / 181

Bringing the two together

Soundness and completeness

◮ A formula is a theorem of ht if and only if it is ht-valid

In particular

◮ ϕ and ψ are ht-equivalent iff⇒ ϕ↔ ψ is a theorem of ht

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 114 / 181

Logic here-and-there and ASP

Equilibrium models, Pearce 1997

◮ 〈T ,T 〉 is an equilibrium model of a set A of formulas if
◮ 〈T ,T 〉 |=ht A, and
◮ for every H ⊆ T such that 〈H,T 〉 |=ht A, H = T

Key connection

◮ A set M of atoms is an answer set of a disjunctive logic program P
(general logic program P) if and only if 〈M,M〉 is an equlibrium
model for P

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 115 / 181

Key application

Strong equivalence

◮ Let P and Q be two (general) programs. The following conditions
are equivalent:

◮ P and Q are strongly equivalent
◮ P and Q are ht-equivalent
◮ P and Q have the same ht-models
◮ P ↔ Q is ht-valid
◮ ⇒ P ↔ Q is a theorem of ht

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 116 / 181

Modal logics

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 117 / 181

Modal logics

The language LL

◮ ϕ ::= ⊥ |p |Lϕ | ¬ϕ |ϕ ∨ ϕ |ϕ ∧ ϕ |ϕ ⊃ ϕ (where p - an atom)

◮ a ⊃ L(¬b ∧ L(a ∨ ¬b))

◮ A language to express “modalities”
◮ “is known”
◮ “is believed”
◮ “is possible”
◮ “is provable”
◮ “is necessary”
◮ · · ·

◮ We will read Lϕ as: ϕ is defeasibly known
◮ Common abbreviation: Mϕ ::= ¬L¬ϕ

◮ Mϕ - “ϕ is possible”

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 118 / 181

Modal logics

Proof theory

◮ Modus ponens and necessitation ϕ
Lϕ

◮ Instances of propositional tautologies: Lϕ ∨ ¬Lϕ, etc.
◮ Instances of modal axiom schemata such as:

◮ K: L(ϕ ⊃ ψ) ⊃ (Lϕ ⊃ Lψ)
◮ T: Lϕ ⊃ ϕ
◮ 4: Lϕ ⊃ LLϕ
◮ F: (ϕ ∧ ¬L¬Lψ) ⊃ L(¬ϕ ∨ ψ)
◮ W5: ϕ ∧MLϕ ⊃ Lϕ
◮ 5: ¬L¬Lϕ ⊃ Lϕ (or ¬Lϕ ⊃ L¬Lϕ)

◮ Logics determined by modal axioms
◮ Modal logic S4: K, T, 4
◮ Modal logic S4F: K, T, 4, F
◮ Modal logic SW5: K, T, 4,
◮ Modal logic S5: K, T, 4, 5

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 119 / 181

Modal logics: proof theory example

Lemma: if ⊢ ϕ ⊃ ψ then ⊢ Lϕ ⊃ Lψ

1. L(ϕ→ ψ) ⊃ (Lϕ ⊃ Lψ) axiom K
2. ϕ ⊃ ψ given
3. L(ϕ ⊃ ψ) necessitation
4. Lϕ ⊃ Lψ modus ponens

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 120 / 181

Modal logics: proof theory example

Proof theory: Mϕ↔ MMϕ is a theorem of S4

1. L¬¬L¬ϕ ⊃ ¬¬L¬ϕ axiom T
2. L¬¬L¬ϕ ⊃ L¬ϕ prop taut
3. ¬L¬ϕ ⊃ ¬L¬¬L¬ϕ prop taut
4. Mϕ ⊃ MMϕ rewriting
5. L¬ϕ ⊃ LL¬ϕ axiom 4
6. L¬ϕ ⊃ ¬¬L¬ϕ prop taut
7. LL¬ϕ ⊃ L¬¬L¬ϕ lemma
8. L¬ϕ ⊃ L¬¬L¬ϕ from (5) and (7)
9. ¬L¬¬L¬ϕ ⊃ ¬L¬ϕ prop taut
10. MMϕ ⊃ Mϕ rewriting

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 121 / 181

Modal logics

More theorems

1. MMϕ↔ Mϕ thm of S4
2. LLϕ↔ Lϕ thm of S4
3. LMLMϕ↔ LMϕ thm of S4
4. MLMLϕ↔ MLϕ thm of S4
5. LMLϕ↔ MLϕ thm of S4F
6. MLMϕ↔ LMϕ thm of S4F

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 122 / 181

Modal logics

Modalities

◮ Sequences of modal operators: L, MML, MMMLMMML, etc
◮ L, M, LM, ML, LML, MLM — the only nontrivial modalities of S4
◮ L, M, LM, ML — the only nontrivial modalities of S4F
◮ But: M = ¬L¬ and ¬LM = ML¬
◮ So, only two different modal notions modeled in S4F:

◮ L - “defeasibly knowing”
◮ ML - “believing”

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 123 / 181

Modal logics

Soundness and completeness for the logic K

◮ ϕ is a theorem of the logic K if and only if ϕ is valid in every Kripke
model

◮ Logic K is characterized by the class of all Kripke models

Soundness and completeness for other logics

◮ Restrictions on the form of the accessibility relation needed
◮ Logic S is characterized by the class of Kripke models with with

the accessibility relation satisfying properties . . .

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 124 / 181

Modal logics

Soundness and completeness for the logic K

◮ ϕ is a theorem of the logic K if and only if ϕ is valid in every Kripke
model

◮ Logic K is characterized by the class of all Kripke models

Soundness and completeness for other logics

◮ Restrictions on the form of the accessibility relation needed
◮ Logic S is characterized by the class of Kripke models with with

the accessibility relation satisfying properties . . .

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 124 / 181

Modal nonmonotonic logics

Expansions

◮ S — modal (monotone) logic
◮ S-expansion of a modal theory T ⊆ LL:

E = CnS({T ∪ {¬Lϕ|ϕ ∈ LL \ E})

Relation to answer sets?

◮ M is an answer set of a (disjunctive) LP P if and only if
◮ M = LM(P ∪ {not a |a ∈ At \M}) ∩ At
◮ M ∈ LM(P ∪ {not a |a ∈ At \M}) ∩ At - for disjunctive LPs

◮ not a is treated as a new propositional atom

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 125 / 181

Modal nonmonotonic logics

Expansions

◮ S — modal (monotone) logic
◮ S-expansion of a modal theory T ⊆ LL:

E = CnS({T ∪ {¬Lϕ|ϕ ∈ LL \ E})

Relation to answer sets?

◮ M is an answer set of a (disjunctive) LP P if and only if
◮ M = LM(P ∪ {not a |a ∈ At \M}) ∩ At
◮ M ∈ LM(P ∪ {not a |a ∈ At \M}) ∩ At - for disjunctive LPs

◮ not a is treated as a new propositional atom

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 125 / 181

Modal nonmonotonic logics

Properties of expansions: T - an expansion

◮ Expansions are closed under S5
◮ T = CnS5(T)

◮ Expansions are epistemically complete
◮ for every ϕ ∈ LL: either Lϕ ∈ T or ¬Lϕ ∈ T

◮ Expansions are closed under introspection
◮ if ϕ ∈ T then Lϕ ∈ T
◮ if ϕ /∈ T then ¬Lϕ ∈ T

Representation of expansions

◮ If T is an expansion, T = [A], for some A ⊆ L
◮ Here [A] is a theory of a certain Kripke model determined by A

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 126 / 181

Modal nonmonotonic logics

Properties of expansions: T - an expansion

◮ Expansions are closed under S5
◮ T = CnS5(T)

◮ Expansions are epistemically complete
◮ for every ϕ ∈ LL: either Lϕ ∈ T or ¬Lϕ ∈ T

◮ Expansions are closed under introspection
◮ if ϕ ∈ T then Lϕ ∈ T
◮ if ϕ /∈ T then ¬Lϕ ∈ T

Representation of expansions

◮ If T is an expansion, T = [A], for some A ⊆ L
◮ Here [A] is a theory of a certain Kripke model determined by A

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 126 / 181

Modal nonmonotonic logics

Nonmonotonic S4F captures (T_, 1991; Schwarz and T_, 1994)

◮ (Disjunctive) logic programming with the answer set semantics

La1 ∨ . . . ∨ Lak ← Lb1, . . . ,Lbm,¬MLc1, . . . ,¬MLcn

◮ (Disjunctive) default logic
◮ General default logic (Cabalar, 2004; extended by T_, 2007)

◮ Logic of grounded knowledge (Lin and Shoham, 1990)

◮ Logic of minimal belief and negation as failure (Lifschitz, 1994)

◮ Is S4F the logic underlying nonmon reasoning?

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 127 / 181

Theory simplifies some restrictions

Modal defaults and modal default theories

◮ ϕ ::= Lψ |Lϕ | ¬ϕ |ϕ ∨ ϕ |ϕ ∧ ϕ |ϕ ⊃ ϕ
where ψ — a propositional formula

◮ For modal default theories (sets of modal defaults) S4F
characterizes strong equivalence!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 128 / 181

First, the semantics simplifies!

Se-interpretations

◮ 〈H,T 〉 - H,T are propositional theories closed under
propositional entailment

◮ Entailment relations |=t and |=h for modal defaults
◮ 〈H,T 〉 |=t ϕ

◮ ϕ = Lψ (ψ is propositional): 〈H,T 〉 |=t ϕ if ψ ∈ T

◮ Boolean connectives standard

◮ ϕ = Lψ, where ψ is a modal default

〈H,T 〉 |=t ϕ if 〈H,T 〉 |=t ψ

◮ We write 〈H,T 〉 |= ϕ if 〈H,T 〉 |=h ϕ and 〈H,T 〉 |=t ϕ

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 129 / 181

First, the semantics simplifies!

Se-interpretations

◮ 〈H,T 〉 - H,T are propositional theories closed under
propositional entailment

◮ Entailment relations |=t and |=h for modal defaults
◮ 〈H,T 〉 |=h ϕ

◮ ϕ = Lψ (where ψ is propositional): 〈H,T 〉 |=h ϕ if ψ ∈ H

◮ Boolean connectives standard

◮ ϕ = Lψ, where ψ is a modal default

〈H,T 〉 |=h ϕ if 〈H,T 〉 |=h ψ and 〈H,T 〉 |=t ψ

◮ We write 〈H,T 〉 |= ϕ if 〈H,T 〉 |=h ϕ and 〈H,T 〉 |=t ϕ

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 129 / 181

First, the semantics simplifies!

Se-interpretations

◮ 〈H,T 〉 - H,T are propositional theories closed under
propositional entailment

◮ Entailment relations |=t and |=h for modal defaults
◮ 〈H,T 〉 |=h ϕ

◮ ϕ = Lψ (where ψ is propositional): 〈H,T 〉 |=h ϕ if ψ ∈ H

◮ Boolean connectives standard

◮ ϕ = Lψ, where ψ is a modal default

〈H,T 〉 |=h ϕ if 〈H,T 〉 |=h ψ and 〈H,T 〉 |=t ψ

◮ We write 〈H,T 〉 |= ϕ if 〈H,T 〉 |=h ϕ and 〈H,T 〉 |=t ϕ

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 129 / 181

Putting it all together

Se-interpretations ≡ se-models (for modal defaults)

◮ Under the restriction to modal defaults and modal default theories,
se-interpretations characterize the entailment relation in S4F

◮ E is an extension of I iff 〈E ,E〉 |= P and for every E ′ ⊆ E such
that 〈E ′,E〉 |= P, E ′ = E

◮ Generalizes the concept of an extension introduced by Reiter
◮ Similarities with equilibrium models

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 130 / 181

Putting it all together

Strong equivalence

◮ Let I ′, I ′′ ⊆ LL be modal defalt theories. The following conditions
are equivalent:

◮ I′ and I′′ are strongly equivalent (I′ ∪ I and I′′ ∪ I have the same
S4F-expansions for every modal default theory I)

◮ I′ and I′′ are valid in the same se-interpretations

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 131 / 181

General logic programming

Modal rules, modal programs

◮ Modal rule: ϕ ::= Lp |Lϕ | ¬ϕ |ϕ ∨ ϕ |ϕ ∧ ϕ |ϕ ⊃ ϕ
where p is a propositional atom

◮ A special class of modal default theories
◮ SW5 can be used instead of S4F
◮ Simple se-models: pairs 〈H,T 〉, where H and T are sets of atoms,

H ⊆ T
◮ M is an answer set of a modal program P if 〈Cn(M),Cn(M)〉 is a

selected SW5-model of P
◮ M is an answer set of P iff 〈M,M〉 |= P and for every M ′ ⊆ M such

that 〈M ′,M〉 |= P, M ′ = M
◮ Generalizes the concept of an answer set of a DLP by Gelfond

and Lifschitz

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 132 / 181

General logic programming

Strong equivalence

◮ Let P ′,P ′′ ⊆ LL be modal programs. The following conditions are
equivalent:

◮ P′ and P′′ are strongly equivalent
◮ P′ and P′′ are valid in the same simple se-models
◮

Examples

◮ H ← p,not p,B - a “tautology”
◮ Lp ∧ ¬MLp ⊃ ⊥ - a thm of T (and so SW5)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 133 / 181

General logic programming

Strong equivalence

◮ Let P ′,P ′′ ⊆ LL be modal programs. The following conditions are
equivalent:

◮ P′ and P′′ are strongly equivalent
◮ P′ and P′′ are valid in the same simple se-models
◮

Examples

◮ H ← p,not p,B - a “tautology”
◮ Lp ∧ ¬MLp ⊃ ⊥ - a thm of T (and so SW5)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 133 / 181

Lessons

Logic here-and-there

◮ Is the logic of strong equivalence in general logic programming
◮ Characterizes uniform equivalence in general logic programming
◮ Non-mon here-and-there = general LP (Ferraris and Lifschitz)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 134 / 181

Lessons, cont’d

SW5 when restricted to modal programs

◮ An alternative to logic here-and-there
◮ Connectives “classical” (but modality in the language)
◮ Every theorem in SW5 yields a “tautology” for modal programs
◮ Supports transformations preserving answer sets
◮ But: is it the case that P and P ′ are strongly equivalent iff P ↔ P ′

is a theorem of SW5?
◮ For some classes of modal programs YES

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 135 / 181

Lessons, cont’d

S4F when restricted to modal defaults

◮ Extends SW5 (modal defaults properly extend modal programs)
◮ Captures several additional nonmonotonic logics
◮ Is the logic of strong equivalence in these formalisms
◮ As before, connectives “classical” (but modality in the language)
◮ Source of “tautologies”
◮ Supports transformations preserving extensions
◮ But: is it the case that ϕ and ψ are strongly equivalent iff ϕ↔ ψ is

a theorem S4F?

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 136 / 181

Algebraic approach

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 137 / 181

The problem

Complex landscape of nonmonotonicity

◮ Multitude of formalisms
◮ Different intuitions
◮ Different languages
◮ Different semantics
◮ Complexity

Needed!

◮ Unifying abstract foundation

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 138 / 181

The problem

Complex landscape of nonmonotonicity

◮ Multitude of formalisms
◮ Different intuitions
◮ Different languages
◮ Different semantics
◮ Complexity

Needed!

◮ Unifying abstract foundation

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 138 / 181

A triumph of universal algebra

Basic lesson for this segment

◮ Major nonmonotonic systems
◮ logic programming
◮ default logic
◮ autoepistemic logics

can be given a unified algebraic treatment
◮ Each system can be assigned the same family of semantics
◮ Key concepts: lattices and bilattices, operators and fixpoints
◮ Key ideas: approximating operators and stable operators
◮ Key tool: Knaster-Tarski Theorem

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 139 / 181

Overview of approach

Generalize Fitting’s work on logic programming

◮ Central role of 4-valued van Emden-Kowalski operator TP

◮ Derived stable operator, Ψ′P
◮ 2-valued and 3-valued supported models and Kripke-Kleene

semantics described by fixpoints of TP

◮ 2-valued and 3-valued stable models and well-founded semantics
described by fixpoints of Ψ′P

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 140 / 181

Lattices

Key definitions, some notation

◮ 〈L,≤〉
◮ L is a nonempty set
◮ ≤ is a partial order such that every two lattice elements have lub

(join) and glb (meet)
◮ Elements of L express

◮ degree of truth
◮ measure of knowledge

◮ ≤ - order of increased truth or knowledge
◮ Complete lattices (both bounds defined for all sets)
◮ ⊥, ⊤

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 141 / 181

Lattices - examples

Lattice T WO

◮ {f, t}
◮ f ≤ t

Lattice A2

◮ set of all 2-valued interpretations
◮ componentwise extension of the ordering from T WO

LatticeW

◮ family of sets of 2-valued interpretations
◮ W1 ⊑W2 if W2 ⊆W1

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 142 / 181

Lattices - examples

Lattice T WO

◮ {f, t}
◮ f ≤ t

Lattice A2

◮ set of all 2-valued interpretations
◮ componentwise extension of the ordering from T WO

LatticeW

◮ family of sets of 2-valued interpretations
◮ W1 ⊑W2 if W2 ⊆W1

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 142 / 181

Lattices - examples

Lattice T WO

◮ {f, t}
◮ f ≤ t

Lattice A2

◮ set of all 2-valued interpretations
◮ componentwise extension of the ordering from T WO

LatticeW

◮ family of sets of 2-valued interpretations
◮ W1 ⊑W2 if W2 ⊆W1

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 142 / 181

Operators

That’s what it’s all about!

◮ Truth or knowledge can be revised
◮ Revisions are described by operators on lattices
◮ Fixpoints — states of truth or knowledge that cannot be revised

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 143 / 181

Operators

Monotone operators

◮ An operator O is monotone if x ≤ y implies O(x) ≤ O(y)

◮ Knaster-Tarski Theorem: a monotone operator on a complete
lattice has a least fixpoint

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 144 / 181

Operators, cont’d

Antimonotone operators

◮ An operator O is antimonotone if x ≤ y implies O(y) ≤ O(x)

◮ If O is antimonotone then O2 is monotone:

x ≤ y ⇒ O(y) ≤ O(x) ⇒ O2(x) ≤ O2(y)

◮ Oscillating pair: (x , y) is an oscillating pair for an operator O if
O(x) = y and O2(x) = x

◮ Antimonotone operator O has an extreme oscillating pair

(lfp(O2),gfp(O2))

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 145 / 181

Approximations and bilattices

Key definitions, some notation

◮ A pair (x , y) approximates an element z if x ≤ z ≤ y
◮ Orderings of approximations:

◮ information (or precision) ordering: (x1, y1)≤i(x2, y2) iff x1 ≤ x2 and
y2 ≤ y1

◮ truth ordering: (x1, y1) ≤t (x2, y2) iff x1 ≤ x2 and y1 ≤ y2

◮ Bilattice 〈L2,≤i ,≤t〉

◮ A pair (x , y) is consistent if x ≤ y , and inconsistent, otherwise
◮ An element (x , y) is complete if x = y

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 146 / 181

Bilattices - examples

Bilattice FOUR

-
≤t

6≤i
(t, f)

(f, f) (t, t)

(f, t)
�@

� @

Bilattice A4

◮ set of all pairs of 2-valued interpretations (identified with 4-valued
interpretations)

◮ componentwise extension of the orderings from FOUR

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 147 / 181

Bilattices - examples

Bilattice FOUR

-
≤t

6≤i
(t, f)

(f, f) (t, t)

(f, t)
�@

� @

Bilattice A4

◮ set of all pairs of 2-valued interpretations (identified with 4-valued
interpretations)

◮ componentwise extension of the orderings from FOUR

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 147 / 181

Bilattices - examples, cont’d

Bilattice B

◮ Family of pairs of sets of 2-valued interpretations
◮ Belief pairs
◮ (P1,S1) ⊑i (P2,S2) if P2 ⊆ P1 and S1 ⊆ S2

◮ (P1,S1) ⊑t (P2,S2) if P2 ⊆ P1 and S2 ⊆ S1

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 148 / 181

Approximating operators

Key definitions, some notation

◮ A : L2 → L2 approximates O : L→ L if
◮ A(x , x) = (O(x),O(x))
◮ A is ≤i -monotone
◮ A is symmetric: A1(x , y) = A2(y , x), where

A(x , y) = (A1(x , y),A2(x , y))

Properties

◮ Approximating operators are consistent
◮ Complete fixpoints of A correspond to fixpoints of O
◮ Every fixpoint of A is approximated by the least fixpoint of A:

Kripke-Kleene fixpoint of A
◮ Kripke-Kleene fixpoint of an approximating operator is consistent

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 149 / 181

Approximating operators

Key definitions, some notation

◮ A : L2 → L2 approximates O : L→ L if
◮ A(x , x) = (O(x),O(x))
◮ A is ≤i -monotone
◮ A is symmetric: A1(x , y) = A2(y , x), where

A(x , y) = (A1(x , y),A2(x , y))

Properties

◮ Approximating operators are consistent
◮ Complete fixpoints of A correspond to fixpoints of O
◮ Every fixpoint of A is approximated by the least fixpoint of A:

Kripke-Kleene fixpoint of A
◮ Kripke-Kleene fixpoint of an approximating operator is consistent

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 149 / 181

Getting down to business!

Stable operators

◮ If A : L2 → L2 is ≤i -monotone then A1(·, y) and A2(x , ·) are
monotone

◮ For ≤i -monotone operator A : L2 → L2 define:

C l
A(y) = lfp(A1(·, y)) and Cu

A(x) = lfp(A2(x , ·))

◮ Since A is symmetric, C l
A = Cu

A = CA

◮ Stable operator for A:

CA(x , y) = (CA(y),CA(x))

◮ Stable fixpoints (relative to CA)
◮ ≤i -least fixpoint of CA — well-founded (WF) fixpoint of A

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 150 / 181

Properties of stable operators

All quite easy to prove, in fact

◮ CA is antimonotone
◮ CA is ≤i -monotone and ≤t -antimonotone
◮ Fixpoints of CA are ≤t -minimal fixpoints of A
◮ Complete fixpoints of CA correspond to fixpoints of CA

◮ Complete fixpoints of CA are fixpoints of O
◮ K-K fixpoint of A ≤i WF fixpoint of A

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 151 / 181

Logic programming — case study 1

Fitting

◮ Lattice A2, bilattice A4

◮ Operators associated with program P
◮ 2-valued van Emden-Kowalski operator TP
◮ Its approximation: 4-valued van Emden-Kowalski operator TP
◮ 2-valued stable operator (Gelfond-Lifschitz operator GLP)
◮ Stable operator CP of TP (operator Ψ′

P of Przymusinski)
◮ Semantics

◮ Supported models: fixpoints of the operator TP (TP)
◮ Kripke-Kleene semantics: least fixpoint of TP
◮ Stable models: fixpoints of the operator CP (CP)
◮ Well-founded semantics: least fixpoint of CP

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 152 / 181

Logic programming explained

Central role of TP

TP

TP CP

CP

�
�	

��
�	

@
@R

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 153 / 181

Autoepistemic Logic — case study 2

Truth assignment function HV ,I

◮ For atom p: HV ,I(p) = I(p)

◮ The boolean connectives — standard way
◮ HV ,I(KF) = t, if for every J ∈ V , HV ,J(F) = t
◮ HV ,I(KF) = f, otherwise

AE models, expansions

◮ Moore’s operator DT : W →W

DT (V) = {I : HV ,I(T) = t}

◮ Fixpoints of DT — autoepistemic models of T
◮ Autoepistemic models generate expansions

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 154 / 181

Autoepistemic Logic — case study 2

Truth assignment function HV ,I

◮ For atom p: HV ,I(p) = I(p)

◮ The boolean connectives — standard way
◮ HV ,I(KF) = t, if for every J ∈ V , HV ,J(F) = t
◮ HV ,I(KF) = f, otherwise

AE models, expansions

◮ Moore’s operator DT : W →W

DT (V) = {I : HV ,I(T) = t}

◮ Fixpoints of DT — autoepistemic models of T
◮ Autoepistemic models generate expansions

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 154 / 181

AEL — approximating operators

The setting

◮ LatticeW, bilattice B
◮ H4

(V ,V ′),I

◮ Approximating operator for DT — DT (DMT 98)

DT (V ,V ′) = ({I : H4
(V ,V ′),I(T) ≥t (f, t)}, {I : H4

(V ,V ′),I(T) ≥t (t, f)})

◮ Complete fixpoints of DT — autoepistemic models of T
◮ The least fixpoint of DT — Kripke-Kleene fixpoint

◮ approximates all autoepistemic models of T

◮ The stable operator for DT : CT (V ,V ′) = (CT (V ′),CT (V))

◮ What are the fixpoints of CT ?

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 155 / 181

Autoepistemic logic explained

Central role of DT

DT

DT CT

CT

�
�	

��
�	

@
@R

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 156 / 181

Default Logic — case study 3

Same setting as for AEL

◮ LatticeW, bilattice B
◮ HV ,I(ϕ) = I(ϕ), for every formula ϕ

◮ d = α : β1,...,βk
γ

◮ HV ,I(d) = t iff
◮ there is J ∈ V such that J(α) = f, or
◮ there is i, 1 ≤ i ≤ k such that for every J ∈ V , J(βi) = f, or
◮ I(γ) = t

◮ Weak-extension operator E∆ (∆ — default theory):

E∆(V) = {I ∈ A2 : HV ,I(∆) = t}

◮ Fixpoints of E∆(V) — default models of weak extensions of ∆

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 157 / 181

DL

4-valued truth assignment, approximating operator

◮ H4
(V ,V ′),I

◮ Approximating operator for E∆ — E∆

E∆(V ,V ′) = ({I : H4
(V ,V ′),I(∆) ≥t (f, t)}, {I : H4

(V ,V ′),I(∆) ≥t (t, f)})

◮ Complete fixpoints of E∆ — models of weak extensions of ∆

◮ The least fixpoint of E∆ — Kripke-Kleene fixpoint
◮ approximates all default models of weak extensions of ∆

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 158 / 181

DL

Stable operator

◮ The stable operator for E∆:

C∆(V ,V ′) = (C∆(V ′),C∆(V))

◮ C∆ — Guerreiro-Casanova operator Σ∆

◮ Fixpoints of C∆ — default models of Reiter’s extensions
◮ Consistent fixpoints of C∆ — stationary extensions by

Przymusinski
◮ Well-founded fixpoint of E∆ (least fixpoint of C∆ — well-founded

semantics of default logic by Baral and Subrahmanian)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 159 / 181

DL explained

Central role of E∆

E∆

E∆ C∆

C∆

�
�	

��
�	

@
@R

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 160 / 181

Connections

Strong parallels!

TP

TP CP

CP

�
�	

��
�	

@
@R

E∆

E∆ C∆

C∆

�
�	

��
�	

@
@R

-

c ← a, not b ⇒ a:¬b
c

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 161 / 181

Connections

Strong parallels!

TP

TP CP

CP

�
�	

��
�	

@
@R

E∆

E∆ C∆

C∆

�
�	

��
�	

@
@R

DT

DT CT

CT

�
�	

��
�	

@
@R

- -

c ← a, not b ⇒ a:¬b
c

α:β
γ
⇒ Kα ∧ ¬K¬β ⊃ γ

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 161 / 181

Computing with nonmon logics

Need programs with variables

◮ To facilitate modeling!
◮ General schema: answer-set programming

◮ Encode problem constraints as finite programs
◮ Represent problem instances as sets of ground atoms
◮ So that extensions (expansions, stable models) of the union of the

two represent solutions

◮ Most commonly used logic: logic programming with stable-model
semantics

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 162 / 181

Computing with logic programs

Ground

◮ Instantiate all rules by replacing variables with constants in the
program and data specification

◮ ground(P) — grounding of P
◮ Allows to lift the semantics from the propositional case:

◮ A set M of ground atoms (an Herbrand interpretation) is a stable
model for P if M is a stable model for ground(P)

Solve

◮ Find stable models of the resulting ground (essentially,
propositional) program

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 163 / 181

Computing with logic programs

Ground

◮ Instantiate all rules by replacing variables with constants in the
program and data specification

◮ ground(P) — grounding of P
◮ Allows to lift the semantics from the propositional case:

◮ A set M of ground atoms (an Herbrand interpretation) is a stable
model for P if M is a stable model for ground(P)

Solve

◮ Find stable models of the resulting ground (essentially,
propositional) program

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 163 / 181

How to compute stable models?

Observations

◮ ground(P) may be infinite; stable models may be infinite
◮ Thus, eliminate function symbols from the language
◮ Ensures that ground(P) is finite and stable models are finite
◮ DATALOG¬

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 164 / 181

Smodels/lparse Niemelä, Simons and Syrjänen

A precursor to all present implementations

◮ Two main modules
◮ lparse — computes a subset of ground(P) preserving stable

models of P
◮ smodels — computes stable models using an optimized version of

a Davis-Putnam backtracking search procedure

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 165 / 181

Lparse

Grounds input programs

◮ Prtitions predicates into
◮ domain predicates (no recursion through negation)
◮ non-domain predicates (all others)

◮ Accepts domain-restricted programs
◮ Rule is domain-restricted if: each variable appears in a

domain-predicate atom that is non-negated in the body
◮ Program is domain-restricted if each rule is

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 166 / 181

Domain predicates

Examples

◮ Facts — yes
vtx(v). vtx(u). vtx(w). arc(v,u). arc(u,w).

◮ Non-recursive predicates — yes
two-path(X,Y) :- arc(X,Z), arc(Z,Y), not arc(X,Y).

◮ Recursive predicates (no recursion through negation) — yes
tc(X,Y) :- arc(X,Y).
tc(X,Y) :- arc(X,Z), tc(Z,Y), vtx(Y).

◮ Recursion through negation — no
in(X,Y) :- edge(X,Y), not out(X,Y).
out(X,Y) :- edge(X,Y), not in(X,Y).

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 167 / 181

Domain-restriction

Why?

◮ Allows us to eliminate non-essential ground rules from ground(P)

◮ Subprogram of a program P consisting of rules defining domain
predicates has a unique stable model Mdom

◮ Mdom is a subset of every stable model of the program
◮ ground(P) contains for each rule all its ground instances
◮ Only those ground instances matter whose domain-predicate

atoms in the body hold in Mdom

◮ Mdom can be computed quickly
◮ possible optimizations using deductive database techniques

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 168 / 181

Role of domain-restriction

Example

◮ Given
edge(1,2). clr(r). clr(b).
:- clr(C), edge(X,Y), clrd(X,C), clrd(Y,C).

◮ The rule yields 64 (43) ground instances:
...
:- clr(1), edge(r,2), clrd(r,1), clrd(r,1).
...

◮ Only 2 ground instances matter!
:- clr(a), edge(1,2), clrd(1,a), clrd(2,a).
:- clr(b), edge(1,2), clrd(1,b), clrd(2,b).

◮ Can be further simplified now
:- clrd(1,a), clrd(2,a).
:- clrd(1,b), clrd(2,b).

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 169 / 181

Domain-restriction

Allows limited support for function symbols

◮ Support for domain-restricted arithmetic
d(1). d(2). d(3).
even(X+1) :- d(X), X < 3, not even(X).

◮ Evaluate and simplify away during grounding
even(2) :- not even(1).
even(3) :- not even(2).

◮ Notation:
d(1..n). for d(1). d(2). ... d(n).

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 170 / 181

smodels

Computes stable models of programs produced by lparse

◮ Backtracking search for a set of atoms in lparse(P) that is a stable
model

◮ Similar to Davis-Putnam procedure for SAT
◮ Node in the search tree corresponds to a set of literals possibly

consistent with a stable model
◮ To prune the search space:

◮ propagation techniques (similar to unit propagation in SAT)
◮ good heuristics to choose an atom for a choice point

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 171 / 181

smodels

Basic propagation rules in smodels

◮ Given a set of literals A:
◮ derive a set of literals extending A and consistent with all stable

models that are consistent with A

◮ Propagation does not eliminate stable models
◮ Examples:

◮ If all literals in a rule are false except for exactly one, say L, derive L
(unit propagation rule, as in SAT)

◮ If there is only one rule c defining q and q ∈ A, derive all literals in
the body of c

◮ If all rules for q are blocked, derive not q
◮ If no finite backward chain through positive atoms for q, then not q

generalization of the well-founded model computation

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 172 / 181

smodels

Propagation — lookahead

◮ Assume a and apply basic propagation
◮ if conflict, add not (a) to A and continue basic propagation

◮ Otherwise, assume not (a) and apply basic propagation
◮ if conflict, add a to A and continue basic propagation

◮ Trade-off between time spent in propagation and its effect
◮ Currently — full lookahaed used in smodels

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 173 / 181

smodels/lparse

Extensions

◮ Additional syntax (“shorthands”) to facilitate programming
◮ Extended semantics generalizing the stable-model semantics
◮ Choice rule: {a1, . . . ,am} : −L1, . . . ,Ln.

◮ ai — atoms; Lj — literals
◮ If the body holds, then any subset of {a1, ...,am} (including empty)

can be derived (is justified by the rule)
◮ Cardinality atom: l {L1, . . . ,Ln} u

◮ l, u — integer constants or variables
◮ Lj — literals
◮ satisfied in a model M if the number of the literals from {p1, . . . ,pn}

satisfied in M is between integers l and u (inclusive)
◮ Implicit representations of literals in cardinality atoms

◮ l {p(X ,Y) : d1(X)} u — d1 is a domain predicate

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 174 / 181

Programming with smodels/lparse

Methodology

◮ Adding constraint : −L1, . . . ,Ln to program P eliminates all stable
models of P that satisfy L1, . . . ,Ln

◮ Leads to basic programming methodology: generate and test
◮ Generator: provides candidate answer sets

(typically encoded using even loops/choice rules)
◮ Tester: eliminates those candidates that violate problem constraints

(typically encoded using constraints)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 175 / 181

Examples

Vertex cover (set of vertices “covering” all edges of a graph

%% vtx and edge specified as ground facts
%% k entered from the command line
{in(X)} :- vtx(X).
:- edge(X,Y), not in(X), not in(Y).
{in(X): vtx(X)} k.

Graph k -coloring

%% vtx and edge specified as ground facts
%% k entered from the command line
color(1..k).
1{clrd(X,C): color(C)}1 :- vtx(X).
:- edge(X,Y), clrd(X,C), clrd(Y,C).

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 176 / 181

Examples

Vertex cover (set of vertices “covering” all edges of a graph

%% vtx and edge specified as ground facts
%% k entered from the command line
{in(X)} :- vtx(X).
:- edge(X,Y), not in(X), not in(Y).
{in(X): vtx(X)} k.

Graph k -coloring

%% vtx and edge specified as ground facts
%% k entered from the command line
color(1..k).
1{clrd(X,C): color(C)}1 :- vtx(X).
:- edge(X,Y), clrd(X,C), clrd(Y,C).

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 176 / 181

Example — Hamiltonian path

Input data: directed graph, starting vertex

vtx(a). vtx(b). ...
edge(a,b). edge(c,a). ...
start(a).

Generator

{ hp(X,Y) } :- edge(X,Y).

Tester

%% Each vertex has at most one incoming edge and one outgoing edge
:-hp(X,Y), hp(X,Z), edge(X,Y), edge(X,Z), Y!=Z.
:-hp(Y,X), hp(Z,X), edge(Y,X), edge(Z,X), Y!=Z.

%% Every vertex is reachable from a given initial vertex
r(Y) :- start(Y).
r(Y) :- edge(X,Y), hp(X,Y), r(X).
:- vtx(X), not r(X).

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 177 / 181

Example — Hamiltonian path

Input data: directed graph, starting vertex

vtx(a). vtx(b). ...
edge(a,b). edge(c,a). ...
start(a).

Generator

{ hp(X,Y) } :- edge(X,Y).

Tester

%% Each vertex has at most one incoming edge and one outgoing edge
:-hp(X,Y), hp(X,Z), edge(X,Y), edge(X,Z), Y!=Z.
:-hp(Y,X), hp(Z,X), edge(Y,X), edge(Z,X), Y!=Z.

%% Every vertex is reachable from a given initial vertex
r(Y) :- start(Y).
r(Y) :- edge(X,Y), hp(X,Y), r(X).
:- vtx(X), not r(X).

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 177 / 181

Example — Hamiltonian path

Input data: directed graph, starting vertex

vtx(a). vtx(b). ...
edge(a,b). edge(c,a). ...
start(a).

Generator

{ hp(X,Y) } :- edge(X,Y).

Tester

%% Each vertex has at most one incoming edge and one outgoing edge
:-hp(X,Y), hp(X,Z), edge(X,Y), edge(X,Z), Y!=Z.
:-hp(Y,X), hp(Z,X), edge(Y,X), edge(Z,X), Y!=Z.

%% Every vertex is reachable from a given initial vertex
r(Y) :- start(Y).
r(Y) :- edge(X,Y), hp(X,Y), r(X).
:- vtx(X), not r(X).

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 177 / 181

Example — Hamiltonian path

Discussion

◮ Clauses
:-hp(X,Y), hp(X,Z), edge(X,Y), edge(X,Z), Y!=Z.
:-hp(Y,X), hp(Z,X), edge(Y,X), edge(Z,X), Y!=Z.

can be replaced with:
:- 2 { hp(X,Y):edge(X,Y) }, vtx(X).
:- 2 { hp(X,Y):edge(X,Y) }, vtx(Y).

◮ The set of atoms hp(x , y) in a stable model determines a
Hamilton path starting in a

◮ All Hamilton paths starting in a are so specified
◮ lparse output has size that is linear in the size of input graph
◮ Hamilton-path problem is challenging for SAT solvers as no

compact SAT encoding (with size linear in the size of input graph)
is known

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 178 / 181

Other systems

Dlv Leone, Eiter et al

◮ The same general approach as in smodels: ground and search
◮ Advanced grounding

◮ dlv grounder borrows heavily from the area of deductive databases
◮ rule rewriting and join optimization methods

◮ Disjunction in the heads
◮ Built-in arithmetic
◮ Support or aggregate operations (in particular, cardinality atoms)
◮ Propagation based on generalizations of well-founded semantics

to the disjunctive case
◮ Expressive power: class Σ2

P-search

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 179 / 181

Other solvers

There is much more

◮ Clasp (Schaub et al, Potsdam)
◮ Cmodels (Lierler, UT Austin)
◮ Assat (Lin and Zhao, Hong-Kong University of Science and

Technology)

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 180 / 181

Thank you!

ESSLLI 2008, Hamburg (University of Kentucky)Nonmonotonic logics—recent advances Aug. 3-7, 2008 181 / 181

