Representing and Reasoning About Preferences

Combintorics Meets Decision Theory

Mirosław Truszczyński University of Kentucky

The Third Polish Combinatorial Conference Będlewo, September 24-30, 2010

Preferences are ubiquitous

Just consider these statements ...

- I prefer fish to beef to chicken or pork (being indifferent about the last two)
- I prefer vacation in May or June to one in July or August
- I prefer aisle seat to window seat to middle seat
- A sedan is better than an SUV
- With beef, I prefer red wine to beer to water
- But with chicken, I prefer white wine to beer to red wine to water

Preferences are important!

People are self-interested

- We like some things better than others
- And often feel strongly about it we really want what we like
- And we subject our decisions to our preferences

And so, understanding preferences is important!

Indeed, it ...

- Can help us make better decisions
- Can help us understand decisions made by others and so, interact with them
- Is essential for building artificial agents to assist our decision making or act on our behalf

We need to be able to ...

- Acquire preferences
- Represent preferences
- Aggregate preferences coming from multiple sources
- Choose best outcomes given preferences
- Automate all or at least some of it

And so, understanding preferences is important!

Indeed, it ...

- Can help us make better decisions
- Can help us understand decisions made by others and so, interact with them
- Is essential for building artificial agents to assist our decision making or act on our behalf

We need to be able to ...

- Acquire preferences
- Represent preferences
- Aggregate preferences coming from multiple sources
- Choose best outcomes given preferences
- Automate all or at least some of it

Now more formally

The basic setting

- A finite set, O, of outcomes or configurations
- A binary preference relation ≥ on O
 - $o \succeq o' o$ is at least as good as o'
- "Derived" relations: \succ and \approx
 - ("strict preference") $o \succ o'$ if $o \succeq o'$ and not $o' \succeq o$
 - ("indifference") $o \approx o'$ if $o \succeq o'$ and $o' \succeq o$

Key problems

- To extract \succeq
- It is the second represent in the second representation in the second representation is the second
- To compute optimal outcomes
- To compare outcomes

Now more formally

The basic setting

- A finite set, O, of outcomes or configurations
- A binary preference relation ≥ on O
 - $o \succeq o' o$ is at least as good as o'
- "Derived" relations: \succ and \approx
 - ("strict preference") $o \succ o'$ if $o \succeq o'$ and not $o' \succeq o$
 - ("indifference") $o \approx o'$ if $o \succeq o'$ and $o' \succeq o$

Key problems

- To extract \succeq
- Ito represent ≥
- To compute optimal outcomes
- To compare outcomes

Preferences and utility

Standard approach used in decision theory

- Preferences via utility functions
- Pick a function $u: O \rightarrow [0, 1]$ (or all reals not important)
- Define $o \succeq o'$ iff $u(o) \ge u(o')$

The proper setting

Lotteries over O

- A *lottery* a probability distribution over O
 - a restaurant can be described by the lottery:
 - [0.7 : beef, 0.2 : vegetarian, 0.1 : fish]
 - [0.3 : beef, 0.5 : vegetarian, 0.2 : fish]
 - a gamble is described by payoffs and their probabilities: [0.5: \$2,000,000,0.5:\$0]
- (Recursively) a *lottery* a probability distribution on lotteries over O
- Preferences via expected utility
 - assuming u(beef) = 9, u(veg) = 11 and u(fish) = 12
 - u(first) = 9.7; u(second) = 10.6
- But a word of caution
 - a gamble between a payoff of \$2,000,000 and 0 with equal odds
 - a gamble with sure payoff of \$999,999

The power of the expected utility approach

Under rather natural desiderata on preferences on lotteries

- Every preference relation can be so described!!
- That is, for every preference
 <u>→</u> on lotteries satisfying these desiderata
- There is a utility function on atomic outcomes, such that the corresponding expected utility function characterize the preference ≤ on lotteries von Neumann-Morgenstern, 1944

The power of the expected utility approach

The desiderata:

- Completeness For every lotteries $\ell, \ell', \ell \succ \ell'$ or $\ell' \succ \ell$ or $\ell \approx \ell'$
- Transitivity If $\ell \succeq \ell'$ and $\ell' \succeq \ell''$ then $\ell \succeq \ell''$
- Substitutability If $\ell \approx \ell'$, then $[p: \ell, p_2: \ell_2, \dots, p_k: \ell_k] \approx [p: \ell', p_2: \ell_2, \dots, p_k: \ell_k]$
- Decomposability If for every $o \in O$, $P_{\ell}(o) = P_{\ell'}(o)$, then $\ell \approx \ell'$
- Monotonicity If $\ell \succ \ell'$ and p > q then $[p: \ell, (1-p): \ell'] \succ [q: \ell, (1-q): \ell']$
- Continuity If $\ell \succ \ell' \succ \ell''$, then there is $p \in [0, 1]$ such that $\ell' \approx [p : \ell, (1 p) : \ell'']$.

The power of expected utility approach

von Neumann-Morgenstern Theorem, 1944

If a relation
 <u>⊢</u> on lotteries satisfies these axioms then there is a function *u* : O → [0, 1] such that

•
$$u(\ell) \ge u(\ell')$$
 iff $\ell \succeq \ell'$

•
$$u([p_1:o_1,\ldots,p_k:o_k]) = \sum_{i=1}^k p_i u_i(o_i)$$

Elegant and intuitive

But not free of problems

- Large spaces of (basic) outcomes
- The number of different dinners one can "construct" in a restaurant already too large for anybody to have any utility function for it
- And this is just a toy example imagine ordering a plane
- Building "correct" utility functions on basic outcomes
 - difficult, costly and time consuming
 - error prone
 - and so, often impractical
 - even when we disregard the lotteries
- Perhaps worth the effort in building medical decision support systems
- Rarely in "non life-critical" applications

Alternatives?

Qualitative approaches

- Approximating the preference relation based on a limited number of qualitative statements
- OP-nets
 - Conditional preference networks
 - Ceteris paribus (or all else being equal) networks
- Equally intuitive and supporting preference elicitation
- Give rise to interesting combinatorial, algorithm design and computational complexity questions

Conditional preference networks Boutilier, Brafman, Hoos, Poole

CP-net

- A structure to facilitate eliciting, representing and reasoning about preferences over *multivariable* domain
- The setting

A set V of variables $V = \{v_1, \ldots, v_n\}$ with domains D_1, \ldots, D_n

- An outcome: a tuple $\langle a_1, \ldots, a_n \rangle$, where $a_i \in D_i$
- A dinner as an outcome
 - variables: first course, main course, drink and dessert
 - domains: {soup, salad}, {fish, beef}, ...
 - \diamond (soup, fish, wine, cake), (salad, beef, beer, icecream)

Two key elements

Dependency graph on variables

 Conditional preference tables
 Total order of values of a variable for all combinations of values of parent variables

Main		
b >	f	

1	Drink		
	br > wn	b	
	wn > br	f	

Dessert		
c > ic	b	br
c > ic	b	wn
c > ic	f	br
ic > c	f	wn

Preference elicitation made easier!!

Two key elements

Dependency graph on variables

 Conditional preference tables Total order of values of a variable for all combinations of values of parent variables

Main		
b	>	f

Drink	
br > wn	b
wn > br	f

Dessert		
c > ic	b	br
c > ic	b	wn
c > ic	f	br
ic > c	f	wn

Preference elicitation made easier!!

Ceteris paribus — all else being equal

- With beef I prefer beer to wine
 - When making this statement, we assume all else is equal!!!
 - It allows to compare two dinners with beef identical except that one is with beer, the other with wine
- More generally

 $\langle a_1, \dots, a_i, \dots, a_n \rangle \text{ is better than } \langle a_1, \dots, a'_i, \dots, a_n \rangle$ if $a_i > a'_i$

according to the appropriate row of the CPT for v_i ,

- worsening flip from $\langle a_1, \ldots, a_i, \ldots, a_n \rangle$ to $\langle a_1, \ldots, a'_i, \ldots, a_n \rangle$
- improving flip from $\langle a_1, \ldots, a'_i, \ldots, a_n \rangle$ to $\langle a_1, \ldots, a_i, \ldots, a_n \rangle$

CP-net determined graph

- Vertices outcomes
- (o, o') is an edge if there is an improving flip from o to o'

CP-net determined preference relation

- $o' \preceq o$ if there is a sequence of improving flips from o to o'
- Transitive closure of the graph determined by the CP-net
- The preference relation defined by the CP-net

Worsening flips: the dinner example

- $\langle \mathsf{sd}, \mathsf{b}, \mathsf{br}, \mathsf{ic} \rangle \succeq \langle \mathsf{sd}, \mathsf{f}, \mathsf{br}, \mathsf{c} \rangle \succeq \langle \mathsf{sd}, \mathsf{f}, \mathsf{br}, \mathsf{ic} \rangle$
- $\langle sp, b, br, ic \rangle \succeq \langle sd, b, br, ic \rangle \succeq \langle sd, f, br, ic \rangle$
- $\langle sp, b, br, c \rangle$ an optimal dinner

CP-net determined graph

- Vertices outcomes
- (o, o') is an edge if there is an improving flip from o to o'

CP-net determined preference relation

- $o' \leq o$ if there is a sequence of improving flips from o to o'
- Transitive closure of the graph determined by the CP-net
- The preference relation defined by the CP-net

Worsening flips: the dinner example

- $\langle sd, b, br, ic \rangle \succeq \langle sd, f, br, c \rangle \succeq \langle sd, f, br, ic \rangle$
- $\langle sp, b, br, ic \rangle \succeq \langle sd, b, br, ic \rangle \succeq \langle sd, f, br, ic \rangle$
- $\langle sp, b, br, c \rangle$ an optimal dinner

CP-net determined graph

- Vertices outcomes
- (o, o') is an edge if there is an improving flip from o to o'

CP-net determined preference relation

- $o' \leq o$ if there is a sequence of improving flips from o to o'
- Transitive closure of the graph determined by the CP-net
- The preference relation defined by the CP-net

Worsening flips: the dinner example

- $\langle \mathsf{sd}, \mathsf{b}, \mathsf{br}, \mathsf{ic} \rangle \succeq \langle \mathsf{sd}, \mathsf{f}, \mathsf{br}, \mathsf{c} \rangle \succeq \langle \mathsf{sd}, \mathsf{f}, \mathsf{br}, \mathsf{ic} \rangle$
- $\langle sp, b, br, ic \rangle \succeq \langle sd, b, br, ic \rangle \succeq \langle sd, f, br, ic \rangle$
- $\langle sp, b, br, c \rangle$ an optimal dinner

Dominance and optimality

DOMINANCE

- Outcome α dominates outcome β if there is a non-empty sequence of worsening flips from α to β
 - Slightly different from $\alpha \succeq \beta$
 - $\alpha \succeq \alpha$ always!
 - α dominates α only if α is on a non-empty cycle in the preference relation
- Outcome *α* strictly dominates outcome *β* if *α* dominates *β* but not the other way around
- **DOMINANCE:** given a CP-net and two outcomes α and β , decide whether α dominates β
- STRICT DOMINANCE similarly

OPTIMALITY

• An outcome is optimal if it is not strictly dominated

Dominance and optimality

DOMINANCE

- Outcome α dominates outcome β if there is a non-empty sequence of worsening flips from α to β
 - Slightly different from $\alpha \succeq \beta$
 - $\alpha \succeq \alpha$ always!
 - α dominates α only if α is on a non-empty cycle in the preference relation
- Outcome α strictly dominates outcome β if α dominates β but not the other way around
- **DOMINANCE:** given a CP-net and two outcomes α and β , decide whether α dominates β
- STRICT DOMINANCE similarly

OPTIMALITY

An outcome is optimal if it is not strictly dominated

Dominance and consistency

Consistency

- CP-net is consistent if no outcome dominates itself (no non-empty cycle of worsening flips)
- CONSISTENCY: given a CP-net, decide whether it is consistent

How hard are these problems?

For preference relations represented explicitly

All problems easy – polynomial in the size of the representation
 reduce to problems of reachability and belonging to cycles

But that misses the point!

- CP-net representation often is significantly more compact than the explicit one
 - If the number of parents bounded by a constant, the size is polynomial in the number of variables and the cardinality of the largest domain
- Under CP-net representation of global preference, the complexity of OPTIMALITY, DOMINANCE and CONSISTENCY no longer straightforward

How hard are these problems?

For preference relations represented explicitly

All problems easy – polynomial in the size of the representation
 reduce to problems of reachability and belonging to cycles

But that misses the point!

- CP-net representation often is significantly more compact than the explicit one
 - If the number of parents bounded by a constant, the size is polynomial in the number of variables and the cardinality of the largest domain
- Under CP-net representation of global preference, the complexity of OPTIMALITY, DOMINANCE and CONSISTENCY no longer straightforward

Some earlier results Boutilier, Brafman, Domshlak, Hoos and Poole, 2004

• OPTIMALITY for acyclic CP-nets is easy

- a single sweep algorithm
- arrange variables in topological order
- proceeding according to this order
- assign to each variable its optimal value given the values of its parent variables
- DOMINANCE is in P for binary polytree CP-nets
- DOMINANCE is NP-complete for binary directed-path singly connected CP-nets
- Hence: DOMINANCE is non-trivial already for binary acyclic CP-nets
- On the other hand: CONSISTENCY is assured for acyclic CP-nets
- Non-trivial in general

Some earlier results Boutilier, Brafman, Domshlak, Hoos and Poole, 2004

- OPTIMALITY for acyclic CP-nets is easy
 - a single sweep algorithm
 - arrange variables in topological order
 - proceeding according to this order
 - assign to each variable its optimal value given the values of its parent variables
- DOMINANCE is in P for binary polytree CP-nets
- DOMINANCE is NP-complete for binary directed-path singly connected CP-nets
- Hence: DOMINANCE is non-trivial already for binary acyclic CP-nets
- On the other hand: CONSISTENCY is assured for acyclic CP-nets
- Non-trivial in general

Tree CP-nets

- The longest improving sequence bounded by $O(n^2)$
- There is an algorithm that decides dominance by constructing an improving sequence or "getting stuck" along they way
 - If a variable can be flipped when its descendants cannot be, flip it Each time a leaf variable reaches its desired value, remove it
- There is a tree CP-net and two outcomes for which every improving sequence requires Θ(n²) flips

Polytree CP-nets

- Polytree a dag whose underlying undirected graph is acyclic
- If we assume a fixed bound p on the number of parents still in P
- Much more complex algorithm (adapted from a planning algorithm)
- The polynomial has p in the exponent
- But the longest "irreducible" improving sequence still bounded by O(n²)

Path-directed singly connected CP-nets

- The longest improving sequence still bounded by $O(n^2)$
- Thus, dominance is in NP
- And, is in fact NP-complete

General case of an acyclic CP-net

- In PSPACE but exact complexity not known
- There are acyclic CP-nets with outcomes between which exponential number of flips is necessary

Path-directed singly connected CP-nets

- The longest improving sequence still bounded by $O(n^2)$
- Thus, dominance is in NP
- And, is in fact NP-complete

General case of an acyclic CP-net

- In PSPACE but exact complexity not known
- There are acyclic CP-nets with outcomes between which exponential number of flips is necessary

The general case?

Cyclic dependency nets make sense!

- If meat: red wine over white wine If fish: white wine over red wine
- If red wine: meat over fish If white wine: fish over meat
- A cycle in the dependency graph!

From now on: binary CP-nets

Each variable has a binary domain!

- If x is a variable, $\{x, \neg x\}$ the domain of x.
- Leads to a "logical" representation of CP-nets

Generalized CPTs

• If x depends on x_1, \ldots, x_k

- 2^k rows in the corresponding CPT
- $X_1, \neg X_2, X_3, \ldots, \neg X_n$
- in some rows $x > \neg x$; in others $\neg x > x$
- CPT table for x can be represented by two propositional formulas over {x₁,..., x_k}

From now on: binary CP-nets

Each variable has a binary domain!

- If x is a variable, $\{x, \neg x\}$ the domain of x.
- Leads to a "logical" representation of CP-nets

Generalized CPTs

- If x depends on x_1, \ldots, x_k
 - 2^k rows in the corresponding CPT
 - $\succ x_1, \neg x_2, x_3, \ldots, \neg x_n$
 - in some rows $x > \neg x$; in others $\neg x > x$
 - CPT table for x can be represented by two propositional formulas over {x₁,..., x_k}

Generalized CPTs

- In fact just one of the formulas is enough
- But with two formulas further generalizations possible

Generalized form of CPTs

General CPT for a variable v

- A pair of formulas $(p^+(v), p^-(v))$
 - $p^+(v)$ condition for $v > \neg v$
 - $p^-(v)$ condition for $\neg v > v$
 - neither contains v or ¬v (to exclude "self-dependencies"; not essential)

Generalized CP-nets (GCP-nets)

GCP-net

- A set V of binary variables
- A set of general CPTs: $\{(p^+(v), p^-(v)): v \in V\}$

No dependency graph

All dependencies implicit in preference formulas

• *w* is a parent of *v* if *w* or $\neg w$ appears in $p^+(v)$ or $p^-(v)$

Flips, dominance, consistency

As for CP-nets

Generalized CP-nets (GCP-nets)

GCP-net

- A set V of binary variables
- A set of general CPTs: $\{(p^+(v), p^-(v)): v \in V\}$

No dependency graph

All dependencies implicit in preference formulas

• *w* is a parent of *v* if *w* or $\neg w$ appears in $p^+(v)$ or $p^-(v)$

Flips, dominance, consistency

• As for CP-nets

Generalized CP-nets (GCP-nets)

GCP-net

- A set V of binary variables
- A set of general CPTs: $\{(p^+(v), p^-(v)): v \in V\}$

No dependency graph

All dependencies implicit in preference formulas

• *w* is a parent of *v* if *w* or $\neg w$ appears in $p^+(v)$ or $p^-(v)$

Flips, dominance, consistency

As for CP-nets

GCP-nets: some subclasses

W/r to representation of conditional preferences

- Conjunctive: all formulas $p^+(v)$, $p^-(v)$ are in DNF
- Tabular: for every variable v, p⁺(v), p⁻(v) are DNF formulas whose every disjunct is full w/r to the set of parent variables of v

W/r to properties of conditional preferences

- Locally-consistent: all formulas $p^+(v) \wedge p^-(v)$ consistent
- Complete: all formulas $p^+(v) \lor p^-(v)$ tautologies
- CP-nets: GCP-nets that are locally consistent and complete

GCP-nets: some subclasses

W/r to representation of conditional preferences

- Conjunctive: all formulas $p^+(v)$, $p^-(v)$ are in DNF
- Tabular: for every variable v, p⁺(v), p⁻(v) are DNF formulas whose every disjunct is full w/r to the set of parent variables of v

W/r to properties of conditional preferences

- Locally-consistent: all formulas p⁺(v) ∧ p⁻(v) − consistent
- Complete: all formulas $p^+(v) \lor p^-(v)$ tautologies
- CP-nets: GCP-nets that are locally consistent and complete

GCP-nets

Comments on the size of representation

- Each next class offers, in general, exponentially more compact representations
 - Tabular GCP-nets
 - Conjunctive GCP-nets
 - GCP-nets
- Relevant for complexity studies

Complexity of DOMINANCE

GCP-DOMINANCE is **PSPACE-complete**

- Remains so under the restrictions to GCP-nets that are consistent and conjunctive
- Remains so under the restrictions to GCP-nets that are locally-consistent and conjunctive
- Remains so under the restriction to CP-nets
- Key difficulties:
 - proving PSPACE-completeness of GCP-DOMINANCE
 - dealing with the restriction to complete GCP-nets

Complexity of CONSISTENCY

GCP-CONSISTENCY is PSPACE-complete

- Remains so under the restriction to conjunctive GCP-nets
- Remains so under the restriction to CP-nets

reduction from locally-consistent GCP-nets to locally-consistent complete GCP-nets used for DOMINANCE preserves consistency

About proofs

Membership

Standard

Hardness

- Exploit PSPACE-completeness of STRIPS planning problem
- Use it to establish the complexity of some restricted versions of propositional STRIPS planning problem
- Reduce to GCP-net reasoning problems

About proofs

Membership

Standard

Hardness

- Exploit PSPACE-completeness of STRIPS planning problem
- Use it to establish the complexity of some restricted versions of propositional STRIPS planning problem
- Reduce to GCP-net reasoning problems

STRIPS PLAN is PSPACE-complete

- V: set of propositional variables
- State over V: complete & consistent set of literals over V just like outcomes
- Action a: (pre(a), post(a))
 - pre(a), post(a): consistent conjunctions of literals
 - a leads from state s to state s' if
 - * $s \not\models pre(a)$ and s' = s (no change)
 - $s \models pre(a)$ and s' obtained from s by "flipping" literals whenever necessary to have $post(a) \subseteq s'$

somewhat like flips

- Planning instance: $\langle V, ACT, s, g \rangle$
 - V: set of propositional variables, ACT: set of actions
 - s and g: initial and goal states
- STRIPS PLAN: given (V, ACT, s, g), is there a plan from s to g? (sequence of actions leading from s to g)

somewhat like an improving sequence

Complexity of restricted STRIPS planning

Acyclic action sets

- ACT acyclic: no non-trivial cycles in the state transition graph induced by ACT
- ACYCLIC STRIPS PLAN is PSPACE-complete
 - append states by counters
 - modify actions so that their execution increments the counter (in addition to their regular effect)
- ACTION SET ACYCLICITY is PSPACE-complete

ACTION SET ACYCLICITY **is** PSPACE-complete

Acyclicity through counters

- Assume n variables 2ⁿ states
- Add *n* fresh variables $\{z_1, \ldots, z_n\}$ to count from 0 to $2^n 1$
 - $\neg z_1, \ldots, \neg z_n$ represents 0, and so on
 - z_1 and z_n represent most and least significant digits
- For each action *a* introduce actions a^i , $1 \le i \le n$, such that
 - $pre(a^i) = pre(a) \land \neg z_i \land z_{i+1} \land \ldots \land z_n$
 - $post(a^i) = post(a) \land z_i \land z_{i+1} \land \ldots \land z_n$
 - do what a does and increment counter by 1

For each *i* introduce action *b_i* just for incrementing the counter

The new set of actions is acyclic!!

• There is a plan from *s* to *g* if and only if there is a plan from $s \neg z_1, \ldots, \neg z_n$ to gz_1, \ldots, z_n

ACTION SET ACYCLICITY **is** PSPACE-complete

Acyclicity through counters

- Assume n variables 2ⁿ states
- Add *n* fresh variables $\{z_1, \ldots, z_n\}$ to count from 0 to $2^n 1$
 - ▶ $\neg z_1, \ldots, \neg z_n$ represents 0, and so on
 - z_1 and z_n represent most and least significant digits
- For each action *a* introduce actions a^i , $1 \le i \le n$, such that
 - $pre(a^i) = pre(a) \land \neg z_i \land z_{i+1} \land \ldots \land z_n$
 - $post(a^i) = post(a) \land z_i \land z_{i+1} \land \ldots \land z_n$
 - do what a does and increment counter by 1
- For each *i* introduce action *b_i* just for incrementing the counter

The new set of actions is acyclic!!

• There is a plan from *s* to *g* if and only if there is a plan from $s \neg z_1, \ldots, \neg z_n$ to gz_1, \ldots, z_n

Complexity of restricted STRIPS planning

Single-effect actions

- Postconditions single literals
- Does not lower the complexity still PSPACE-complete
- To simulate an action a with multiple-effects:
 - block other actions
 - enforce postcondition of a in a series of (new) single-effect actions;
 - unblock other actions

Single-effect actions

For each action *a*, a new variable $x_a - a$ "in progress"

- X no action in progress: $\bigwedge_a \neg x_a$
- $X_a a$ and only *a* in progress: $x_a \land \bigwedge_{b \neq a} \neg x_a$
- For each action *a* with $post(a) = I_1 \land \ldots \land I_q$
 - $q \text{ actions } a^{i}, 1 \leq i \leq q$ $pre(a^{i}) = pre(a) \land X \quad post(a^{i}) = x_{a}$ $q \text{ actions } a^{q+i}, 1 \leq i \leq q$ $pre(a^{q+i}) = X_{a} \quad post(a^{q+i}) = I_{i}$ one action a^{2q+1} $pre(a^{2q+1}) = X_{a} \land post(a) \quad post(a^{2q+1}) = \neg x_{a}$

Single-effect actions

Now all actions are single-effect ones

- There is a plan from s to g iff there is a plan from $s \land X$ to $g \land X$
- Acyclicity preserved!

And so ..

• SE ACYCLIC STRIPS and SE STRIPS are PSPACE-complete

Single-effect actions

Now all actions are single-effect ones

- There is a plan from s to g iff there is a plan from $s \land X$ to $g \land X$
- Acyclicity preserved!

And so ...

• SE ACYCLIC STRIPS and SE STRIPS are PSPACE-complete

From STRIPS planning to GCP-nets

STRIPS plan	GCP-net
states	outcomes
actions	generalized CPTs
preconditions	conjuncts in formulas $p^+(v)$ and $p^-(v)$
	"minus" postcondition
postcondition	better of v and $\neg v$
applying action	flipping
plan	flipping sequence
plan exists?	dominance?
set of actions acyclic?	GCP-net consistent?
preconditions postcondition applying action plan plan exists?	conjuncts in formulas $p^+(v)$ and $p^-(v)$ "minus" postcondition better of v and $\neg v$ flipping flipping sequence dominance?

And so ...

GCP-DOMINANCE is PSPACE-complete

- Even under restriction to
 - conjunctive and consistent GCP-nets
 - conjunctive and *locally* consistent GCP-nets
 consistency implies local consistency (no flipping back-and-forth)
- GCP-CONSISTENCY is PSPACE-complete
 - even under the restriction to conjunctive GCP-nets
- What about locally consistent and *complete* GCP-nets (that is, CP-nets)?

Reduction to complete locally-consistent GCP-nets

 Simulate a locally consistent GCP-net C by a locally consistent and complete one, say C'!

Variables

Reduction to complete locally-consistent GCP-nets

 Simulate a locally consistent GCP-net C by a locally consistent and complete one, say C'!

Variables

Preference conditions: q^+ and q^- for C'

- For each x_i:
- $q^+(x_i) = y_i$ and $q^-(x_i) = \neg y_i$
- For each y_i:

•
$$q^+(y_i) = f_i^+ \lor (\neg f_i^- \land x_i)$$
 and $q^-(y_i) = f_i^- \lor (\neg f_i^+ \land \neg x_i)$
• $e_i = \bigwedge_{j \neq i} (x_j \leftrightarrow y_j)$
• $f_i^+ = e_i \land p^+(x_i)$ and $f_i^- = e_i \land p^-(x_i)$

Local consistency and completeness of C' evident
C' is a CP-net

Some more notation

- Outcomes over $\{x_1, ..., x_n, y_1, ..., y_n\}$
- Written as concatenations $\alpha\beta$ of
 - outcomes α over $\{x_1, \ldots, x_n\}$ and
 - outcomes β over $\{y_1, \ldots, y_n\}$
- Let α be an outcome over $\{x_1, \ldots, x_n\}$

For a sequence $s = \alpha_0 \alpha_1 \dots \alpha_m$ of outcomes over *V*

• $L(s) = \alpha_0 \bar{\alpha_0} \alpha_0 \bar{\alpha_1} \alpha_1 \bar{\alpha_1} \dots \alpha_m \bar{\alpha_m}$

For a sequence $t = \epsilon_0 \epsilon_1 \dots \epsilon_m$ of outcomes over V'

- Project each ϵ_i onto V
- Remove consecutive duplicate outcomes until no consecutive duplicates

● *L*′(*t*)

For a sequence $s = \alpha_0 \alpha_1 \dots \alpha_m$ of outcomes over *V*

• $L(\mathbf{s}) = \alpha_0 \bar{\alpha_0} \alpha_0 \bar{\alpha_1} \alpha_1 \bar{\alpha_1} \dots \alpha_m \bar{\alpha_m}$

For a sequence $t = \epsilon_0 \epsilon_1 \dots \epsilon_m$ of outcomes over V'

- Project each ϵ_i onto V
- Remove consecutive duplicate outcomes until no consecutive duplicates
- *L*′(*t*)

With these definitions

- If s is an improving sequence from α to β in C, then L(s) is an improving sequence from αā to ββ̄ in C'
- If *t* is an improving sequence from αā to ββ in C', then L'(t) is an improving sequence from α to β in C
- C is consistent if and only if C' is consistent

Thus

- Testing dominance in a locally consistent GCP C can be reduced to testing dominance in a CP-net C' (PSPACE-hardness of the latter follows)
- PSPACE-hardness of consistency of CP-nets follows in the same way

With these definitions

- If s is an improving sequence from α to β in C, then L(s) is an improving sequence from αā to ββ̄ in C'
- If *t* is an improving sequence from αā to ββ in C', then L'(t) is an improving sequence from α to β in C
- C is consistent if and only if C' is consistent

Thus

- Testing dominance in a locally consistent GCP C can be reduced to testing dominance in a CP-net C' (PSPACE-hardness of the latter follows)
- PSPACE-hardness of consistency of CP-nets follows in the same way

Our results extend to

- The class of GCP-nets with non-binary variables
- Dominance and consistency for preference theories (Wilson, 2004)

Open problems – complexity

- Conjunctive and tabular CP-net dominance and consistency?
- Conjunctive and tabular acyclic CP-net dominance
- Complexity of reasoning with GCP-nets, CP-nets and acyclic CP-nets whose variables have bounded number of parents

Our results extend to

- The class of GCP-nets with non-binary variables
- Dominance and consistency for preference theories (Wilson, 2004)

Open problems – complexity

- Conjunctive and tabular CP-net dominance and consistency?
- Conjunctive and tabular acyclic CP-net dominance
- Complexity of reasoning with GCP-nets, CP-nets and acyclic CP-nets whose variables have bounded number of parents

Problems on implicitly defined graphs

- The improving flip graph
- STRIPS planning graphs
- Upper bounds on flipping sequences needed to demonstrate dominance
- Lower bounds showing what cannot be in general bested

Algorithms

• Find classes of GCP-nets (in particular classes of acyclic CP-nets) where efficient algorithms can be found

Problems on implicitly defined graphs

- The improving flip graph
- STRIPS planning graphs
- Upper bounds on flipping sequences needed to demonstrate dominance
- Lower bounds showing what cannot be in general bested

Algorithms

• Find classes of GCP-nets (in particular classes of acyclic CP-nets) where efficient algorithms can be found

References

- Carmel Domshlak, Ronen I. Brafman: CP-nets: Reasoning and Consistency Testing. KR 2002: 121-132
- Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, David Poole: CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. J. Artif. Intell. Res. (JAIR) 21: 135-191 (2004)
- Judy Goldsmith, Jérôme Lang, Miroslaw Truszczynski, Nic Wilson: The Computational Complexity of Dominance and Consistency in CP-Nets. J. Artif. Intell. Res. (JAIR) 33: 403-432 (2008)