Representing and Reasoning About Preferences

Combintorics Meets Decision Theory

Mirosław Truszczyński
University of Kentucky

The Third Polish Combinatorial Conference
Bȩdlewo, September 24-30, 2010

Preferences are ubiquitous

Just consider these statements ...

- I prefer fish to beef to chicken or pork (being indifferent about the last two)
- I prefer vacation in May or June to one in July or August
- I prefer aisle seat to window seat to middle seat
- A sedan is better than an SUV
- With beef, I prefer red wine to beer to water
- But with chicken, I prefer white wine to beer to red wine to water

Preferences are important!

People are self-interested

- We like some things better than others
- And often feel strongly about it - we really want what we like
- And we subject our decisions to our preferences

And so, understanding preferences is important!

Indeed, it ...

- Can help us make better decisions
- Can help us understand decisions made by others and so, interact with them
- Is essential for building artificial agents to assist our decision making or act on our behalf
- Acquire preferences
- Represent preferences
- Aggregate preferences coming from multiple sources
- Choose best outcomes given preferences
- Automate all or at least some of it

And so, understanding preferences is important!

Indeed, it ...

- Can help us make better decisions
- Can help us understand decisions made by others and so, interact with them
- Is essential for building artificial agents to assist our decision making or act on our behalf

We need to be able to ...

- Acquire preferences
- Represent preferences
- Aggregate preferences coming from multiple sources
- Choose best outcomes given preferences
- Automate all or at least some of it

Now more formally

The basic setting

- A finite set, O, of outcomes or configurations
- A binary preference relation \succeq on O
$0 \succeq o^{\prime}$ - o is at least as good as o^{\prime}
- "Derived" relations: \succ and \approx
("strict preference") $o \succ o^{\prime}$ — if $o \succeq 0^{\prime}$ and not $o^{\prime} \succeq 0$
("indifference") $o \approx 0^{\prime}$ if $o \succeq o^{\prime}$ and $o^{\prime} \succeq 0$

Now more formally

The basic setting

- A finite set, O, of outcomes or configurations
- A binary preference relation \succeq on O
$0 \succeq o^{\prime}-0$ is at least as good as o^{\prime}
- "Derived" relations: \succ and \approx
("strict preference") $o \succ o^{\prime}$ — if $o \succeq 0^{\prime}$ and not $o^{\prime} \succeq 0$
("indifference") $o \approx 0^{\prime}$ if $o \succeq o^{\prime}$ and $o^{\prime} \succeq 0$

Key problems

- To extract \succeq
- To represent \succeq
- To compute optimal outcomes
- To compare outcomes

Preferences and utility

Standard approach used in decision theory

- Preferences via utility functions
- Pick a function $u: O \rightarrow[0,1]$ (or all reals - not important)
- Define $o \succeq o^{\prime}$ iff $u(o) \geq u\left(o^{\prime}\right)$

The proper setting

Lotteries over O

- A lottery - a probability distribution over O
a restaurant can be described by the lottery:
[0.7 : beef, 0.2 : vegetarian, 0.1 : fish]
[0.3 : beef, 0.5 : vegetarian, 0.2 : fish]
a gamble is described by payoffs and their probabilities: [0.5:\$2, 000, 000, 0.5 : \$0]
- (Recursively) a lottery - a probability distribution on lotteries over 0
- Preferences via expected utility

$$
\text { assuming } u(\text { beef })=9, u(v e g)=11 \text { and } u(f i s h)=12
$$

$u($ first $)=9.7 ; u($ second $)=10.6$

- But a word of caution
a gamble between a payoff of $\$ 2,000,000$ and 0 with equal odds a gamble with sure payoff of $\$ 999,999$

The power of the expected utility approach

Under rather natural desiderata on preferences on lotteries

- Every preference relation can be so described!!
- That is, for every preference \preceq on lotteries satisfying these desiderata
- There is a utility function on atomic outcomes, such that the corresponding expected utility function characterize the preference \preceq on lotteries von Neumann-Morgenstern, 1944

The power of the expected utility approach

The desiderata:

- Completeness For every lotteries $\ell, \ell^{\prime}, \ell \succ \ell^{\prime}$ or $\ell^{\prime} \succ \ell$ or $\ell \approx \ell^{\prime}$
- Transitivity If $\ell \succeq \ell^{\prime}$ and $\ell^{\prime} \succeq \ell^{\prime \prime}$ then $\ell \succeq \ell^{\prime \prime}$
- Substitutability If $\ell \approx \ell^{\prime}$, then $\left[p: \ell, p_{2}: \ell_{2}, \ldots, p_{k}: \ell_{k}\right] \approx\left[p: \ell^{\prime}, p_{2}: \ell_{2}, \ldots, p_{k}: \ell_{k}\right]$
- Decomposability If for every $0 \in O, P_{\ell}(0)=P_{\ell^{\prime}}(0)$, then $\ell \approx \ell^{\prime}$
- Monotonicity If $\ell \succ \ell^{\prime}$ and $p>q$ then $\left[p: \ell,(1-p): \ell^{\prime}\right] \succ\left[q: \ell,(1-q): \ell^{\prime}\right]$
- Continuity If $\ell \succ \ell^{\prime} \succ \ell^{\prime \prime}$, then there is $p \in[0,1]$ such that $\ell^{\prime} \approx\left[p: \ell,(1-p): \ell^{\prime \prime}\right]$.

The power of expected utility approach

von Neumann-Morgenstern Theorem, 1944

- If a relation \succeq on lotteries satisfies these axioms then there is a function $u: O \rightarrow[0,1]$ such that

$$
\begin{aligned}
& u(\ell) \geq u\left(\ell^{\prime}\right) \text { iff } \ell \succeq \ell^{\prime} \\
& u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u_{i}\left(o_{i}\right)
\end{aligned}
$$

Elegant and intuitive

But not free of problems

- Large spaces of (basic) outcomes
- The number of different dinners one can "construct" in a restaurant already too large for anybody to have any utility function for it
- And this is just a toy example - imagine ordering a plane
- Building "correct" utility functions on basic outcomes
difficult, costly and time consuming
error prone
and so, often impractical
even when we disregard the lotteries
- Perhaps worth the effort in building medical decision support systems
- Rarely in "non life-critical" applications

Alternatives?

Qualitative approaches

- Approximating the preference relation based on a limited number of qualitative statements
- CP-nets

Conditional preference networks
Ceteris paribus (or all else being equal) networks

- Equally intuitive and supporting preference elicitation
- Give rise to interesting combinatorial, algorithm design and computational complexity questions

Conditional preference networks Boutilier，Brafman，Hoos，Poole

CP－net

－A structure to facilitate eliciting，representing and reasoning about preferences over multivariable domain
－The setting

$$
\text { A set } V \text { of variables } V=\left\{v_{1}, \ldots v_{n}\right\} \text { with domains } D_{1}, \ldots, D_{n}
$$

－An outcome：a tuple $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ ，where $a_{i} \in D_{i}$
－A dinner as an outcome
variables：first course，main course，drink and dessert
domains：\｛soup，salad\}, \{fish, beef\},
〈soup，fish，wine，cake〉，〈salad，beef，beer，icecream〉

CP-nets

Two key elements

- Dependency graph on variables

- Conditional preference tables

Total order of values of a variable for all combinations of values of parent variables

Main
$b>f$

First	
$s p>s d$	b
$s d>s p$	f

Drink	
$b r>w n$	b
$w n>b r$	f

Dessert			
$c>i c$	b	$b r$	
$c>i c$	b	$w n$	
$c>i c$	f	$b r$	
$i c>c$	f	$w n$	

CP-nets

Two key elements

- Dependency graph on variables

- Conditional preference tables

Total order of values of a variable for all combinations of values of parent variables

Main
$b>f$

First	
$s p>s d$	b
$s d>s p$	f

Drink	
$b r>w n$	b
$w n>b r$	f

Dessert		
$c>i c$	b	$b r$
$c>i c$	b	$w n$
$c>i c$	f	$b r$
$i c>c$	f	$w n$

- Preference elicitation made easier!!

CP-nets

Ceteris paribus - all else being equal

- With beef I prefer beer to wine

When making this statement, we assume all else is equal!!!
It allows to compare two dinners with beef identical except that one is with beer, the other with wine

- More generally
$\left\langle a_{1}, \ldots, a_{i}, \ldots, a_{n}\right\rangle$ is better than $\left\langle a_{1}, \ldots, a_{i}^{\prime}, \ldots, a_{n}\right\rangle$
if $a_{i}>a_{i}^{\prime}$
according to the appropriate row of the CPT for v_{i},
worsening flip from $\left\langle a_{1}, \ldots, a_{i}, \ldots, a_{n}\right\rangle$ to $\left\langle a_{1}, \ldots, a_{i}^{\prime}, \ldots, a_{n}\right\rangle$
improving flip from $\left\langle a_{1}, \ldots, a_{i}^{\prime}, \ldots, a_{n}\right\rangle$ to $\left\langle a_{1}, \ldots, a_{i}, \ldots, a_{n}\right\rangle$

CP-nets

CP-net determined graph

- Vertices - outcomes
- (o, o^{\prime}) is an edge if there is an improving flip from o to o^{\prime}

- $\langle s d, b, b r, i c\rangle \succeq\langle s d, f, b r, c\rangle \succeq\langle s d, f, b r, i c\rangle$
- $\langle s p, b, b r, i c\rangle \succeq\langle s d, b, b r, i c\rangle \succeq\langle s d, f, b r, i c\rangle$
- $\langle s p, b, b r, c\rangle$ - an optimal dinner

CP-nets

CP-net determined graph

- Vertices - outcomes
- (o, o^{\prime}) is an edge if there is an improving flip from o to o^{\prime}

CP-net determined preference relation

- $o^{\prime} \preceq o$ if there is a sequence of improving flips from o to o^{\prime}
- Transitive closure of the graph determined by the CP-net
- The preference relation defined by the CP-net
- $\langle s p, b, b r, c\rangle$ - an optimal dinner

CP-nets

CP-net determined graph

- Vertices - outcomes
- (o, o^{\prime}) is an edge if there is an improving flip from o to o^{\prime}

CP-net determined preference relation

- $o^{\prime} \preceq o$ if there is a sequence of improving flips from o to o^{\prime}
- Transitive closure of the graph determined by the CP-net
- The preference relation defined by the CP-net

Worsening flips: the dinner example

- $\langle s d, b, b r, i c\rangle \succeq\langle s d, f, b r, c\rangle \succeq\langle s d, f, b r, i c\rangle$
- $\langle s p, b, b r, i c\rangle \succeq\langle s d, b, b r, i c\rangle \succeq\langle s d, f, b r, i c\rangle$
- $\langle s p, b, b r, c\rangle$ - an optimal dinner

Dominance and optimality

DOMINANCE

- Outcome α dominates outcome β if there is a non-empty sequence of worsening flips from α to β

Slightly different from $\alpha \succeq \beta$
$\alpha \succeq \alpha$ always!
α dominates α only if α is on a non-empty cycle in the preference relation

- Outcome α strictly dominates outcome β if α dominates β but not the other way around
- Dominance: given a CP-net and two outcomes α and β, decide whether α dominates β
- StRICT DOMINANCE - similarly
- An outcome is optimal if it is not strictly dominated

Dominance and optimality

DOMINANCE

- Outcome α dominates outcome β if there is a non-empty sequence of worsening flips from α to β

Slightly different from $\alpha \succeq \beta$
$\alpha \succeq \alpha$ always!
α dominates α only if α is on a non-empty cycle in the preference relation

- Outcome α strictly dominates outcome β if α dominates β but not the other way around
- Dominance: given a CP-net and two outcomes α and β, decide whether α dominates β
- StRICT DOMINANCE - similarly

Optimality

- An outcome is optimal if it is not strictly dominated

Dominance and consistency

Consistency

- CP-net is consistent if no outcome dominates itself (no non-empty cycle of worsening flips)
- Consistency: given a CP-net, decide whether it is consistent

How hard are these problems?

For preference relations represented explicitly

- All problems easy - polynomial in the size of the representation reduce to problems of reachability and belonging to cycles
- CP-net representation often is significantly more compact than the explicit one

If the number of parents bounded by a constant, the size is polynomial in the number of variables and the cardinality of the largest domain

- Under CP-net representation of global preference, the complexity of OpTIMALITY, DOMINANCE and CONSISTENCY no longer straightforward

How hard are these problems?

For preference relations represented explicitly

- All problems easy - polynomial in the size of the representation reduce to problems of reachability and belonging to cycles

But that misses the point!

- CP-net representation often is significantly more compact than the explicit one

If the number of parents bounded by a constant, the size is polynomial in the number of variables and the cardinality of the largest domain

- Under CP-net representation of global preference, the complexity of Optimality, Dominance and Consistency no longer straightforward

Some earlier results Boutilier, Brafman, Domshlak, Hoos and Poole, 2004

- Optimality for acyclic CP-nets is easy
a single sweep algorithm arrange variables in topological order proceeding according to this order assign to each variable its optimal value given the values of its parent variables
- Dominance is in P - for binary polytree CP-nets
- Dominance is NP-complete - for binary directed-path singly connected CP-nets
- Hence: DOminance is non-trivial already for binary acyclic CP-nets
- On the other hand: CONSISTENCY is assured for acyclic CP-nets
- Non-trivial in general

Some earlier results Boutilier, Brafman, Domshlak, Hoos and Poole, 2004

- Optimality for acyclic CP-nets is easy a single sweep algorithm arrange variables in topological order proceeding according to this order assign to each variable its optimal value given the values of its parent variables
- Dominance is in P - for binary polytree CP-nets
- Dominance is NP-complete - for binary directed-path singly connected CP-nets
- Hence: Dominance is non-trivial already for binary acyclic CP-nets
- On the other hand: CONSISTENCY is assured for acyclic CP-nets
- Non-trivial in general

Dominance - special cases

Tree CP-nets

- The longest improving sequence bounded by $O\left(n^{2}\right)$
- There is an algorithm that decides dominance by constructing an improving sequence or "getting stuck" along they way

If a variable can be flipped when its descendants cannot be, flip it
Each time a leaf variable reaches its desired value, remove it

- There is a tree CP-net and two outcomes for which every improving sequence requires $\Theta\left(n^{2}\right)$ flips

Dominance - special cases

Polytree CP-nets

- Polytree - a dag whose underlying undirected graph is acyclic
- If we assume a fixed bound p on the number of parents - still in P
- Much more complex algorithm (adapted from a planning algorithm)
- The polynomial has p in the exponent
- But the longest "irreducible" improving sequence still bounded by $O\left(n^{2}\right)$

Dominance - special cases

Path-directed singly connected CP-nets

- The longest improving sequence still bounded by $O\left(n^{2}\right)$
- Thus, dominance is in NP
- And, is in fact NP-complete

Dominance - special cases

Path-directed singly connected CP-nets

- The longest improving sequence still bounded by $O\left(n^{2}\right)$
- Thus, dominance is in NP
- And, is in fact NP-complete

General case of an acyclic CP-net

- In PSPACE but exact complexity not known
- There are acyclic CP-nets with outcomes between which exponential number of flips is necessary

The general case?

Cyclic dependency nets make sense!

- If meat: red wine over white wine

If fish: white wine over red wine

- If red wine: meat over fish If white wine: fish over meat
- A cycle in the dependency graph!

From now on: binary CP-nets

Each variable has a binary domain!

- If x is a variable, $\{x, \neg x\}$ - the domain of x.
- Leads to a "logical" representation of CP-nets

From now on: binary CP-nets

Each variable has a binary domain!

- If x is a variable, $\{x, \neg x\}$ - the domain of x.
- Leads to a "logical" representation of CP-nets

Generalized CPTs

- If x depends on x_{1}, \ldots, x_{k}

$$
2^{k} \text { rows in the corresponding CPT }
$$

$x_{1}, \neg x_{2}, x_{3}, \ldots, \neg x_{n}$
in some rows $x>\neg x$; in others $\neg x>x$
CPT table for x can be represented by two propositional formulas over $\left\{x_{1}, \ldots, x_{k}\right\}$

Generalized CPTs

Dessert		
$c>i c$	b	$b r$
$c>i c$	b	$w n$
$c>i c$	f	$b r$
$i c>c$	f	$w n$

- $\neg c$ for ic
- $\neg b$ for f
- $\neg w n$ for $b r$
- $c>\neg c: b \vee(\neg b \wedge \neg w n)$
- $\neg c>c: \neg b \wedge w n$
- In fact just one of the formulas is enough
- But with two formulas further generalizations possible

Generalized form of CPTs

General CPT for a variable v

- A pair of formulas $\left(p^{+}(v), p^{-}(v)\right)$
$p^{+}(v)$ - condition for $v>\neg v$
$p^{-}(v)$ - condition for $\neg v>v$
neither contains v or $\neg v$ (to exclude "self-dependencies"; not essential)

Generalized CP-nets (GCP-nets)

GCP-net

- A set V of binary variables
- A set of general CPTs: $\left\{\left(p^{+}(v), p^{-}(v)\right): v \in V\right\}$

- As for CP-nets

Generalized CP-nets (GCP-nets)

GCP-net

- A set V of binary variables
- A set of general CPTs: $\left\{\left(p^{+}(v), p^{-}(v)\right): v \in V\right\}$

No dependency graph
All dependencies implicit in preference formulas

- w is a parent of v if w or $\neg w$ appears in $p^{+}(v)$ or $p^{-}(v)$
- As for CP-nets

Generalized CP-nets (GCP-nets)

GCP-net

- A set V of binary variables
- A set of general CPTs: $\left\{\left(p^{+}(v), p^{-}(v)\right): v \in V\right\}$

No dependency graph
All dependencies implicit in preference formulas

- w is a parent of v if w or $\neg w$ appears in $p^{+}(v)$ or $p^{-}(v)$

Flips, dominance, consistency

- As for CP-nets

GCP-nets: some subclasses

W / r to representation of conditional preferences

- Conjunctive: all formulas $p^{+}(v), p^{-}(v)$ are in DNF
- Tabular: for every variable $v, p^{+}(v), p^{-}(v)$ are DNF formulas whose every disjunct is full w / r to the set of parent variables of v
- Locally-consistent: all formulas $p^{+}(v) \wedge p^{-}(v)$ - consistent
- Complete: all formulas $p^{+}(v) \vee p^{-}(v)$ - tautologies
- CP-nets: GCP-nets that are locally consistent and complete

GCP-nets: some subclasses

W/r to representation of conditional preferences

- Conjunctive: all formulas $p^{+}(v), p^{-}(v)$ are in DNF
- Tabular: for every variable $v, p^{+}(v), p^{-}(v)$ are DNF formulas whose every disjunct is full w / r to the set of parent variables of v
W / r to properties of conditional preferences
- Locally-consistent: all formulas $p^{+}(v) \wedge p^{-}(v)$ - consistent
- Complete: all formulas $p^{+}(v) \vee p^{-}(v)$ - tautologies
- CP-nets: GCP-nets that are locally consistent and complete

GCP-nets

Comments on the size of representation

- Each next class offers, in general, exponentially more compact representations
- Tabular GCP-nets

Conjunctive GCP-nets
GCP-nets

- Relevant for complexity studies

Complexity of dOmINANCE

GCP-DOMINANCE is PSPACE-complete

- Remains so under the restrictions to GCP-nets that are consistent and conjunctive
- Remains so under the restrictions to GCP-nets that are locally-consistent and conjunctive
- Remains so under the restriction to CP-nets
- Key difficulties:
proving PSPACE-completeness of GCP-DOMINANCE dealing with the restriction to complete GCP-nets

Complexity of CONSISTENCY

GCP-CONSISTENCY is PSPACE-complete

- Remains so under the restriction to conjunctive GCP-nets
- Remains so under the restriction to CP-nets
reduction from locally-consistent GCP-nets to locally-consistent complete GCP-nets used for DOMINANCE preserves consistency

About proofs

Membership
 - Standard

Hardness
 - Exploit PSPACE-completeness of STRIPS planning problem
 - Use it to establish the complexity of some restricted versions of propositional STRIPS planning problem
 - Reduce to GCP-net reasoning problems

About proofs

Membership

- Standard

Hardness

- Exploit PSPACE-completeness of STRIPS planning problem
- Use it to establish the complexity of some restricted versions of propositional STRIPS planning problem
- Reduce to GCP-net reasoning problems

STRIPS PLAN is PSPACE-complete

- V : set of propositional variables
- State over V : complete \& consistent set of literals over V just like outcomes
- Action a: (pre(a), post(a))
pre(a), post(a): consistent conjunctions of literals
a leads from state s to state s^{\prime} if
$s \notin \operatorname{pre}(a)$ and $s^{\prime}=s$ (no change)
$s \models \operatorname{pre}(a)$ and s^{\prime} obtained from s by "flipping" literals whenever necessary to have $\operatorname{post}(a) \subseteq s^{\prime}$ somewhat like flips
- Planning instance: $\langle V, A C T, s, g\rangle$
V : set of propositional variables, $A C T$: set of actions s and g : initial and goal states
- STRIPS PLAN: given $\langle V, A C T, s, g\rangle$, is there a plan from s to g ? (sequence of actions leading from s to g)
somewhat like an improving sequence

Complexity of restricted STRIPS planning

Acyclic action sets

- ACT - acyclic: no non-trivial cycles in the state transition graph induced by $A C T$
- ACYCLIC STRIPS PLAN is PSPACE-complete append states by counters
modify actions so that their execution increments the counter (in addition to their regular effect)
- ACTION SET ACYCLICITY is PSPACE-complete

ACTION SET ACYCLICITY is PSPACE-complete

Acyclicity through counters

- Assume n variables - 2^{n} states
- Add n fresh variables $\left\{z_{1}, \ldots, z_{n}\right\}$ to count from 0 to $2^{n}-1$
$\neg z_{1}, \ldots, \neg z_{n}$ represents 0 , and so on
z_{1} and z_{n} represent most and least significant digits
- For each action a introduce actions $a^{i}, 1 \leq i \leq n$, such that

$$
\begin{aligned}
& \operatorname{pre}\left(a^{i}\right)=\operatorname{pre}(a) \wedge \neg z_{i} \wedge z_{i+1} \wedge \ldots \wedge z_{n} \\
& \text { post }\left(a^{i}\right)=\operatorname{post}(a) \wedge z_{i} \wedge z_{i+1} \wedge \ldots \wedge z_{n} \\
& \text { do what a does and increment counter by } 1
\end{aligned}
$$

- For each i introduce action b_{i} just for incrementing the counter
- There is a plan from s to g if and only if there is a plan from $s \neg z_{1}, \ldots, \neg z_{n}$ to $g z_{1}$

ACTION SET ACYCLICITY is PSPACE-complete

Acyclicity through counters

- Assume n variables - 2^{n} states
- Add n fresh variables $\left\{z_{1}, \ldots, z_{n}\right\}$ to count from 0 to $2^{n}-1$
$\neg z_{1}, \ldots, \neg z_{n}$ represents 0 , and so on
z_{1} and z_{n} represent most and least significant digits
- For each action a introduce actions $a^{i}, 1 \leq i \leq n$, such that

$$
\begin{aligned}
& \operatorname{pre}\left(a^{i}\right)=\operatorname{pre}(a) \wedge \neg z_{i} \wedge z_{i+1} \wedge \ldots \wedge z_{n} \\
& \text { post }\left(a^{i}\right)=\operatorname{post}(a) \wedge z_{i} \wedge z_{i+1} \wedge \ldots \wedge z_{n} \\
& \text { do what a does and increment counter by } 1
\end{aligned}
$$

- For each i introduce action b_{i} just for incrementing the counter

The new set of actions is acyclic!!

- There is a plan from s to g if and only if there is a plan from $s \neg z_{1}, \ldots, \neg z_{n}$ to $g z_{1}, \ldots, z_{n}$

Complexity of restricted STRIPS planning

Single-effect actions

- Postconditions - single literals
- Does not lower the complexity — still PSPACE-complete
- To simulate an action a with multiple-effects: block other actions enforce postcondition of a in a series of (new) single-effect actions; unblock other actions

Single-effect actions

For each action a, a new variable $x_{a}-a$ "in progress"

- X - no action in progress: $\wedge_{a} \neg x_{a}$
- $X_{a}-a$ and only a in progress: $x_{a} \wedge \bigwedge_{b \neq a} \neg x_{a}$
- For each action a with $\operatorname{post}(a)=I_{1} \wedge \ldots \wedge I_{q}$
q actions $a^{i}, 1 \leq i \leq q$

$$
\operatorname{pre}\left(a^{i}\right)=\operatorname{pre}(a) \wedge X \quad \operatorname{post}\left(a^{i}\right)=x_{a}
$$

q actions $a^{q+i}, 1 \leq i \leq q$

$$
\operatorname{pre}\left(a^{q+i}\right)=X_{a} \quad \operatorname{post}\left(a^{q+i}\right)=I_{i}
$$

one action $a^{2 q+1}$

$$
\operatorname{pre}\left(a^{2 q+1}\right)=X_{a} \wedge \operatorname{post}(a) \quad \operatorname{post}\left(a^{2 q+1}\right)=\neg X_{a}
$$

Single-effect actions

Now all actions are single-effect ones

- There is a plan from s to g iff there is a plan from $s \wedge X$ to $g \wedge X$
- Acyclicity preserved!

Single-effect actions

Now all actions are single-effect ones

- There is a plan from s to g iff there is a plan from $s \wedge X$ to $g \wedge X$
- Acyclicity preserved!

And so ...

- SE Acyclic STRIPS and SE STRIPS are PSPACE-complete

From STRIPS planning to GCP-nets

STRIPS plan	GCP-net
states	outcomes
actions	generalized CPTs
preconditions	conjuncts in formulas $p^{+}(v)$ and $p^{-}(v)$
"minus" postcondition	
postcondition	better of v and $\neg v$
applying action	flipping
plan	flipping sequence
plan exists?	dominance?
set of actions acyclic?	GCP-net consistent?

And so ...

GCP-Dominance is PSPACE-complete

- Even under restriction to
conjunctive and consistent GCP-nets
conjunctive and locally consistent GCP-nets consistency implies local consistency (no flipping back-and-forth)
- GCP-Consistency is PSPACE-complete even under the restriction to conjunctive GCP-nets
- What about locally consistent and complete GCP-nets (that is, CP-nets)?

From GCP-nets to CP-nets

Reduction to complete locally-consistent GCP-nets

- Simulate a locally consistent GCP-net C by a locally consistent and complete one, say C^{\prime} !

From GCP-nets to CP-nets

Reduction to complete locally-consistent GCP-nets

- Simulate a locally consistent GCP-net C by a locally consistent and complete one, say C^{\prime} !

Variables

- $V=\left\{x_{1}, \ldots, x_{n}\right\}$ - variables of C
- $V^{\prime}=V \cup\left\{y_{1}, \ldots, y_{n}\right\}$ - variables of C^{\prime}

From GCP-nets to CP-nets

Preference conditions: q^{+}and q^{-}for C^{\prime}

- For each x_{i} :
- $q^{+}\left(x_{i}\right)=y_{i}$ and $q^{-}\left(x_{i}\right)=\neg y_{i}$
- For each y_{i} :
- $q^{+}\left(y_{i}\right)=f_{i}^{+} \vee\left(\neg f_{i}^{-} \wedge x_{i}\right)$ and $q^{-}\left(y_{i}\right)=f_{i}^{-} \vee\left(\neg f_{i}^{+} \wedge \neg x_{i}\right)$

$$
\begin{aligned}
e_{i} & =\bigwedge_{j \neq i}\left(x_{j} \leftrightarrow y_{j}\right) \\
f_{i}^{+} & =e_{i} \wedge p^{+}\left(x_{i}\right) \quad \text { and } \quad f_{i}^{-}=e_{i} \wedge p^{-}\left(x_{i}\right)
\end{aligned}
$$

- Local consistency and completeness of C^{\prime} evident
- C^{\prime} is a CP-net

From GCP-nets to CP-nets

Some more notation

- Outcomes over $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$
- Written as concatenations $\alpha \beta$ of
outcomes α over $\left\{x_{1}, \ldots, x_{n}\right\}$ and outcomes β over $\left\{y_{1}, \ldots, y_{n}\right\}$
- Let α be an outcome over $\left\{x_{1}, \ldots, x_{n}\right\}$
$x_{i} \mapsto y_{i}$
$\neg x_{i} \mapsto \neg y_{i}$
$\bar{\alpha}$

From GCP-nets to CP-nets

For a sequence $s=\alpha_{0} \alpha_{1} \ldots \alpha_{m}$ of outcomes over V

- $L(s)=\alpha_{0} \overline{\alpha_{0}} \alpha_{0} \overline{\alpha_{1}} \alpha_{1} \overline{\alpha_{1}} \ldots \alpha_{m} \overline{\alpha_{m}}$

From GCP-nets to CP-nets

For a sequence $s=\alpha_{0} \alpha_{1} \ldots \alpha_{m}$ of outcomes over V

- $L(s)=\alpha_{0} \overline{\alpha_{0}} \alpha_{0} \overline{\alpha_{1}} \alpha_{1} \overline{\alpha_{1}} \ldots \alpha_{m} \overline{\alpha_{m}}$

For a sequence $t=\epsilon_{0} \epsilon_{1} \ldots \epsilon_{m}$ of outcomes over V^{\prime}

- Project each ϵ_{i} onto V
- Remove consecutive duplicate outcomes until no consecutive duplicates
- $L^{\prime}(t)$

From GCP-nets to CP-nets

With these definitions

- If s is an improving sequence from α to β in C, then $L(s)$ is an improving sequence from $\alpha \bar{\alpha}$ to $\beta \bar{\beta}$ in C^{\prime}
- If t is an improving sequence from $\alpha \bar{\alpha}$ to $\beta \bar{\beta}$ in C^{\prime}, then $L^{\prime}(t)$ is an improving sequence from α to β in C
- C is consistent if and only if C^{\prime} is consistent
- Testing dominance in a locally consistent GCP C can be reduced to testing dominance in a CP-net C^{\prime} (PSPACE-hardness of the latter follows)
- PSPACE-hardness of consistency of CP-nets follows in the same way

From GCP-nets to CP-nets

With these definitions

- If s is an improving sequence from α to β in C, then $L(s)$ is an improving sequence from $\alpha \bar{\alpha}$ to $\beta \bar{\beta}$ in C^{\prime}
- If t is an improving sequence from $\alpha \bar{\alpha}$ to $\beta \bar{\beta}$ in C^{\prime}, then $L^{\prime}(t)$ is an improving sequence from α to β in C
- C is consistent if and only if C^{\prime} is consistent

Thus

- Testing dominance in a locally consistent GCP C can be reduced to testing dominance in a CP-net C^{\prime} (PSPACE-hardness of the latter follows)
- PSPACE-hardness of consistency of CP-nets follows in the same way

Discussion

Our results extend to

- The class of GCP-nets with non-binary variables
- Dominance and consistency for preference theories (Wilson, 2004)
- Conjunctive and tabular CP-net dominance and consistency?
- Coniunctive and tabular acvclic CP-net dominance
- Complexity of reasoning with GCP-nets, CP-nets and acyclic CP-nets whose variables have bounded number of parents

Discussion

Our results extend to

- The class of GCP-nets with non-binary variables
- Dominance and consistency for preference theories (Wilson, 2004)

Open problems - complexity

- Conjunctive and tabular CP-net dominance and consistency?
- Conjunctive and tabular acyclic CP-net dominance
- Complexity of reasoning with GCP-nets, CP-nets and acyclic CP-nets whose variables have bounded number of parents

Discussion

Problems on implicitly defined graphs

- The improving flip graph
- STRIPS planning graphs
- Upper bounds on flipping sequences needed to demonstrate dominance
- Lower bounds - showing what cannot be in general bested
- Find classes of GCP-nets (in particular classes of acyclic CP-nets) where efficient algorithms can be found

Discussion

Problems on implicitly defined graphs

- The improving flip graph
- STRIPS planning graphs
- Upper bounds on flipping sequences needed to demonstrate dominance
- Lower bounds - showing what cannot be in general bested

Algorithms

- Find classes of GCP-nets (in particular classes of acyclic CP-nets) where efficient algorithms can be found

References

- Carmel Domshlak, Ronen I. Brafman: CP-nets: Reasoning and Consistency Testing. KR 2002: 121-132
- Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, David Poole: CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. J. Artif. Intell. Res. (JAIR) 21: 135-191 (2004)
- Judy Goldsmith, Jérôme Lang, Miroslaw Truszczynski, Nic Wilson: The Computational Complexity of Dominance and Consistency in CP-Nets. J. Artif. Intell. Res. (JAIR) 33: 403-432 (2008)

