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Preferences are ubiquitous

Just consider these statements ...
I prefer fish to beef to chicken or pork (being indifferent about the
last two)

I prefer vacation in May or June to one in July or August

I prefer aisle seat to window seat to middle seat

A sedan is better than an SUV

With beef, I prefer red wine to beer to water

But with chicken, I prefer white wine to beer to red wine to water
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Preferences are important!

People are self-interested
We like some things better than others

And often feel strongly about it — we really want what we like

And we subject our decisions to our preferences
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And so, understanding preferences is important!

Indeed, it ...
Can help us make better decisions

Can help us understand decisions made by others and so, interact
with them

Is essential for building artificial agents to assist our decision
making or act on our behalf

We need to be able to ...
Acquire preferences

Represent preferences

Aggregate preferences coming from multiple sources

Choose best outcomes given preferences

Automate all or at least some of it
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Now more formally

The basic setting
A finite set, O, of outcomes or configurations
A binary preference relation � on O

◮ o � o′ — o is at least as good as o′

“Derived” relations: ≻ and ≈
◮ (“strict preference”) o ≻ o′ — if o � o′ and not o′ � o
◮ (“indifference”) o ≈ o′ if o � o′ and o′ � o

Key problems
To extract �

To represent �

To compute optimal outcomes

To compare outcomes
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Preferences and utility

Standard approach used in decision theory
Preferences via utility functions

Pick a function u : O → [0,1] (or all reals — not important)

Define o � o′ iff u(o) ≥ u(o′)
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The proper setting

Lotteries over O
A lottery — a probability distribution over O

◮ a restaurant can be described by the lottery:
⋆ [0.7 : beef ,0.2 : vegetarian,0.1 : fish]
⋆ [0.3 : beef ,0.5 : vegetarian,0.2 : fish]

◮ a gamble is described by payoffs and their probabilities:
[0.5 : $2, 000, 000, 0.5 : $0]

(Recursively) a lottery — a probability distribution on lotteries over
O

Preferences via expected utility
◮ assuming u(beef ) = 9, u(veg) = 11 and u(fish) = 12
◮ u(first) = 9.7; u(second) = 10.6

But a word of caution
◮ a gamble between a payoff of $2,000,000 and 0 with equal odds
◮ a gamble with sure payoff of $999,999
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The power of the expected utility approach

Under rather natural desiderata on preferences on lotteries
Every preference relation can be so described!!

That is, for every preference � on lotteries satisfying these
desiderata

There is a utility function on atomic outcomes, such that the
corresponding expected utility function characterize the
preference � on lotteries
von Neumann-Morgenstern, 1944
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The power of the expected utility approach

The desiderata:

Completeness For every lotteries ℓ, ℓ′, ℓ ≻ ℓ′ or ℓ′ ≻ ℓ or ℓ ≈ ℓ′

Transitivity If ℓ � ℓ′ and ℓ′ � ℓ′′ then ℓ � ℓ′′

Substitutability If ℓ ≈ ℓ′, then
[p : ℓ,p2 : ℓ2, . . . ,pk : ℓk ] ≈ [p : ℓ′,p2 : ℓ2, . . . ,pk : ℓk ]

Decomposability If for every o ∈ O, Pℓ(o) = Pℓ′(o), then ℓ ≈ ℓ′

Monotonicity If ℓ ≻ ℓ′ and p > q then
[p : ℓ, (1 − p) : ℓ′] ≻ [q : ℓ, (1 − q) : ℓ′]

Continuity If ℓ ≻ ℓ′ ≻ ℓ′′, then there is p ∈ [0,1] such that
ℓ′ ≈ [p : ℓ, (1 − p) : ℓ′′].
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The power of expected utility approach

von Neumann-Morgenstern Theorem, 1944
If a relation � on lotteries satisfies these axioms then there is a
function u : O → [0,1] such that

◮ u(ℓ) ≥ u(ℓ′) iff ℓ � ℓ′

◮ u([p1 : o1, . . . , pk : ok ]) =
∑k

i=1 piui(oi )
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Elegant and intuitive

But not free of problems
Large spaces of (basic) outcomes

The number of different dinners one can “construct” in a restaurant
already too large for anybody to have any utility function for it

And this is just a toy example — imagine ordering a plane
Building “correct” utility functions on basic outcomes

◮ difficult, costly and time consuming
◮ error prone
◮ and so, often impractical
◮ even when we disregard the lotteries

Perhaps worth the effort in building medical decision support
systems

Rarely in “non life-critical” applications
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Alternatives?

Qualitative approaches
Approximating the preference relation based on a limited number
of qualitative statements
CP-nets

◮ Conditional preference networks
◮ Ceteris paribus (or all else being equal) networks

Equally intuitive and supporting preference elicitation

Give rise to interesting combinatorial, algorithm design and
computational complexity questions
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Conditional preference networks Boutilier, Brafman, Hoos, Poole

1999

CP-net
A structure to facilitate eliciting, representing and reasoning about
preferences over multivariable domain
The setting

◮ A set V of variables V = {v1, . . . vn} with domains D1, . . . ,Dn

An outcome: a tuple 〈a1, . . . ,an〉, where ai ∈ Di

A dinner as an outcome
◮ variables: first course, main course, drink and dessert
◮ domains: {soup, salad}, {fish, beef}, . . .
◮ 〈soup, fish,wine, cake〉, 〈salad , beef , beer , icecream〉
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CP-nets

Two key elements
Dependency graph on variables

main

first drink

dessert

Conditional preference tables
Total order of values of a variable for all combinations of values of
parent variables

Main
b > f

First
sp > sd b
sd > sp f

Drink
br > wn b
wn > br f

Dessert
c > ic b br
c > ic b wn
c > ic f br
ic > c f wn

Preference elicitation made easier!!
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CP-nets

Ceteris paribus — all else being equal
With beef I prefer beer to wine

◮ When making this statement, we assume all else is equal!!!
◮ It allows to compare two dinners with beef

identical except that one is with beer, the other with wine

More generally
◮ 〈a1, . . . , ai , . . . , an〉 is better than 〈a1, . . . , a′

i , . . . , an〉
if ai > a′

i
according to the appropriate row of the CPT for vi ,

◮ worsening flip from 〈a1, . . . , ai , . . . , an〉 to 〈a1, . . . , a′
i , . . . , an〉

◮ improving flip from 〈a1, . . . , a′
i , . . . , an〉 to 〈a1, . . . , ai , . . . , an〉
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CP-nets

CP-net determined graph
Vertices — outcomes

(o,o′) is an edge if there is an improving flip from o to o′

CP-net determined preference relation

o′ � o if there is a sequence of improving flips from o to o′

Transitive closure of the graph determined by the CP-net

The preference relation defined by the CP-net

Worsening flips: the dinner example

〈sd ,b,br , ic〉 � 〈sd , f ,br , c〉 � 〈sd , f ,br , ic〉

〈sp,b,br , ic〉 � 〈sd ,b,br , ic〉 � 〈sd , f ,br , ic〉

〈sp,b,br , c〉 — an optimal dinner
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Dominance and optimality

DOMINANCE

Outcome α dominates outcome β if there is a non-empty
sequence of worsening flips from α to β

◮ Slightly different from α � β
◮ α � α always!
◮ α dominates α only if α is on a non-empty cycle in the preference

relation

Outcome α strictly dominates outcome β if α dominates β but not
the other way around

DOMINANCE: given a CP-net and two outcomes α and β, decide
whether α dominates β

STRICT DOMINANCE – similarly

OPTIMALITY

An outcome is optimal if it is not strictly dominated
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Dominance and consistency

Consistency
CP-net is consistent if no outcome dominates itself
(no non-empty cycle of worsening flips)

CONSISTENCY: given a CP-net, decide whether it is consistent
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How hard are these problems?

For preference relations represented explicitly
All problems easy – polynomial in the size of the representation

◮ reduce to problems of reachability and belonging to cycles

But that misses the point!
CP-net representation often is significantly more compact than the
explicit one

◮ If the number of parents bounded by a constant, the size is
polynomial in the number of variables and the cardinality of the
largest domain

Under CP-net representation of global preference, the complexity
of OPTIMALITY, DOMINANCE and CONSISTENCY no longer
straightforward
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Some earlier results Boutilier, Brafman, Domshlak, Hoos and Poole, 2004

OPTIMALITY for acyclic CP-nets is easy
◮ a single sweep algorithm
◮ arrange variables in topological order
◮ proceeding according to this order
◮ assign to each variable its optimal value given the values of its

parent variables

DOMINANCE is in P – for binary polytree CP-nets

DOMINANCE is NP-complete – for binary directed-path singly
connected CP-nets

Hence: DOMINANCE is non-trivial already for binary acyclic
CP-nets

On the other hand: CONSISTENCY is assured for acyclic CP-nets

Non-trivial in general
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Dominance – special cases

Tree CP-nets

The longest improving sequence bounded by O(n2)

There is an algorithm that decides dominance by constructing an
improving sequence or “getting stuck” along they way

◮ If a variable can be flipped when its descendants cannot be, flip it
◮ Each time a leaf variable reaches its desired value, remove it

There is a tree CP-net and two outcomes for which every
improving sequence requires Θ(n2) flips
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Dominance – special cases

Polytree CP-nets
Polytree – a dag whose underlying undirected graph is acyclic

If we assume a fixed bound p on the number of parents – still in P

Much more complex algorithm (adapted from a planning
algorithm)

The polynomial has p in the exponent

But the longest “irreducible” improving sequence still bounded by
O(n2)
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Dominance – special cases

Path-directed singly connected CP-nets

The longest improving sequence still bounded by O(n2)

Thus, dominance is in NP

And, is in fact NP-complete

General case of an acyclic CP-net
In PSPACE but exact complexity not known

There are acyclic CP-nets with outcomes between which
exponential number of flips is necessary
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The general case?

Cyclic dependency nets make sense!
If meat: red wine over white wine
If fish: white wine over red wine

If red wine: meat over fish
If white wine: fish over meat

A cycle in the dependency graph!
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From now on: binary CP-nets

Each variable has a binary domain!
If x is a variable, {x ,¬x} — the domain of x .

Leads to a “logical” representation of CP-nets

Generalized CPTs
If x depends on x1, . . . , xk

◮ 2k rows in the corresponding CPT
◮ x1,¬x2, x3, . . . ,¬xn
◮ in some rows x > ¬x ; in others ¬x > x
◮ CPT table for x can be represented by two propositional formulas

over {x1, . . . , xk}
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Generalized CPTs

Dessert
c > ic b br
c > ic b wn
c > ic f br
ic > c f wn

¬c for ic

¬b for f

¬wn for br

c > ¬c : b ∨ (¬b ∧ ¬wn)

¬c > c : ¬b ∧ wn

In fact just one of the formulas is enough

But with two formulas further generalizations possible
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Generalized form of CPTs

General CPT for a variable v
A pair of formulas (p+(v),p−(v))

◮ p+(v) – condition for v > ¬v
◮ p−(v) – condition for ¬v > v
◮ neither contains v or ¬v (to exclude “self-dependencies”; not

essential)
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Generalized CP-nets (GCP-nets)

GCP-net
A set V of binary variables

A set of general CPTs: {(p+(v),p−(v)) : v ∈ V}

No dependency graph
All dependencies implicit in preference formulas

w is a parent of v if w or ¬w appears in p+(v) or p−(v)

Flips, dominance, consistency
As for CP-nets
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GCP-nets: some subclasses

W/r to representation of conditional preferences

Conjunctive: all formulas p+(v), p−(v) are in DNF

Tabular: for every variable v , p+(v), p−(v) are DNF formulas
whose every disjunct is full w/r to the set of parent variables of v

W/r to properties of conditional preferences

Locally-consistent: all formulas p+(v) ∧ p−(v) – consistent

Complete: all formulas p+(v) ∨ p−(v) – tautologies

CP-nets: GCP-nets that are locally consistent and complete
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GCP-nets

Comments on the size of representation
Each next class offers, in general, exponentially more compact
representations

◮ Tabular GCP-nets
◮ Conjunctive GCP-nets
◮ GCP-nets

Relevant for complexity studies
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Complexity of DOMINANCE

GCP-DOMINANCE is PSPACE-complete
Remains so under the restrictions to GCP-nets that are consistent
and conjunctive

Remains so under the restrictions to GCP-nets that are
locally-consistent and conjunctive

Remains so under the restriction to CP-nets

Key difficulties:
◮ proving PSPACE-completeness of GCP-DOMINANCE
◮ dealing with the restriction to complete GCP-nets
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Complexity of CONSISTENCY

GCP-CONSISTENCY is PSPACE-complete
Remains so under the restriction to conjunctive GCP-nets

Remains so under the restriction to CP-nets

reduction from locally-consistent GCP-nets to locally-consistent complete

GCP-nets used for DOMINANCE preserves consistency
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About proofs

Membership
Standard

Hardness
Exploit PSPACE-completeness of STRIPS planning problem

Use it to establish the complexity of some restricted versions of
propositional STRIPS planning problem

Reduce to GCP-net reasoning problems
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STRIPS PLAN is PSPACE-complete Bylander, 1994

V : set of propositional variables

State over V : complete & consistent set of literals over V
just like outcomes

Action a: (pre(a),post(a))
◮ pre(a), post(a): consistent conjunctions of literals
◮ a leads from state s to state s′ if

⋆ s 6|= pre(a) and s′ = s (no change)
⋆ s |= pre(a) and s′ obtained from s by “flipping” literals whenever

necessary to have post(a) ⊆ s′

somewhat like flips

Planning instance: 〈V ,ACT , s,g〉
◮ V : set of propositional variables, ACT : set of actions
◮ s and g: initial and goal states

STRIPS PLAN: given 〈V ,ACT , s,g〉, is there a plan from s to g?
(sequence of actions leading from s to g)
somewhat like an improving sequence
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Complexity of restricted STRIPS planning

Acyclic action sets
ACT – acyclic: no non-trivial cycles in the state transition graph
induced by ACT
ACYCLIC STRIPS PLAN is PSPACE-complete

◮ append states by counters
◮ modify actions so that their execution increments the counter (in addition to

their regular effect)

ACTION SET ACYCLICITY is PSPACE-complete
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ACTION SET ACYCLICITY is PSPACE-complete

Acyclicity through counters

Assume n variables — 2n states
Add n fresh variables {z1, . . . , zn} to count from 0 to 2n − 1

◮ ¬z1, . . . ,¬zn represents 0, and so on
◮ z1 and zn represent most and least significant digits

For each action a introduce actions ai , 1 ≤ i ≤ n, such that
◮ pre(ai) = pre(a) ∧ ¬zi ∧ zi+1 ∧ . . . ∧ zn
◮ post(ai ) = post(a) ∧ zi ∧ zi+1 ∧ . . . ∧ zn
◮ do what a does and increment counter by 1

For each i introduce action bi just for incrementing the counter

The new set of actions is acyclic!!
There is a plan from s to g if and only if there is a plan from
s¬z1, . . . ,¬zn to gz1, . . . , zn

3PCC-10, Bȩdlewo, September 28, 2010 () Representing Preferences 36 / 49



ACTION SET ACYCLICITY is PSPACE-complete

Acyclicity through counters

Assume n variables — 2n states
Add n fresh variables {z1, . . . , zn} to count from 0 to 2n − 1

◮ ¬z1, . . . ,¬zn represents 0, and so on
◮ z1 and zn represent most and least significant digits

For each action a introduce actions ai , 1 ≤ i ≤ n, such that
◮ pre(ai) = pre(a) ∧ ¬zi ∧ zi+1 ∧ . . . ∧ zn
◮ post(ai ) = post(a) ∧ zi ∧ zi+1 ∧ . . . ∧ zn
◮ do what a does and increment counter by 1

For each i introduce action bi just for incrementing the counter

The new set of actions is acyclic!!
There is a plan from s to g if and only if there is a plan from
s¬z1, . . . ,¬zn to gz1, . . . , zn
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Complexity of restricted STRIPS planning

Single-effect actions
Postconditions – single literals

Does not lower the complexity — still PSPACE-complete
To simulate an action a with multiple-effects:

◮ block other actions
◮ enforce postcondition of a in a series of (new) single-effect actions;
◮ unblock other actions
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Single-effect actions

For each action a, a new variable xa — a “in progress”

X — no action in progress:
∧

a ¬xa

Xa — a and only a in progress: xa ∧
∧

b 6=a ¬xa

For each action a with post(a) = l1 ∧ . . . ∧ lq
◮ q actions ai , 1 ≤ i ≤ q

⋆ pre(ai) = pre(a)∧ X post(ai) = xa

◮ q actions aq+i , 1 ≤ i ≤ q
⋆ pre(aq+i) = Xa post(aq+i) = li

◮ one action a2q+1

⋆ pre(a2q+1) = Xa ∧ post(a) post(a2q+1) = ¬xa
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Single-effect actions

Now all actions are single-effect ones
There is a plan from s to g iff there is a plan from s ∧ X to g ∧ X

Acyclicity preserved!

And so ...
SE ACYCLIC STRIPS and SE STRIPS are PSPACE-complete
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3PCC-10, Bȩdlewo, September 28, 2010 () Representing Preferences 39 / 49



From STRIPS planning to GCP-nets

STRIPS plan GCP-net
states outcomes
actions generalized CPTs

preconditions conjuncts in formulas p+(v) and p−(v)
“minus” postcondition

postcondition better of v and ¬v
applying action flipping

plan flipping sequence
plan exists? dominance?

set of actions acyclic? GCP-net consistent?
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And so ...

GCP-DOMINANCE is PSPACE-complete
Even under restriction to

◮ conjunctive and consistent GCP-nets
◮ conjunctive and locally consistent GCP-nets

consistency implies local consistency (no flipping back-and-forth)

GCP-CONSISTENCY is PSPACE-complete
◮ even under the restriction to conjunctive GCP-nets

What about locally consistent and complete GCP-nets (that is,
CP-nets)?
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From GCP-nets to CP-nets

Reduction to complete locally-consistent GCP-nets
Simulate a locally consistent GCP-net C by a locally consistent
and complete one, say C′!

Variables
V = {x1, . . . , xn} — variables of C

V ′ = V ∪ {y1, . . . , yn} — variables of C′
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From GCP-nets to CP-nets

Preference conditions: q+ and q− for C ′

For each xi :

q+(xi) = yi and q−(xi ) = ¬yi

For each yi :

q+(yi) = f+i ∨ (¬f−i ∧ xi) and q−(yi ) = f−i ∨ (¬f+i ∧ ¬xi)

◮ ei =
∧

j 6=i(xj ↔ yj)

◮ f+i = ei ∧ p+(xi) and f−i = ei ∧ p−(xi)

Local consistency and completeness of C′ evident

C′ is a CP-net
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From GCP-nets to CP-nets

Some more notation
Outcomes over {x1, . . . , xn, y1, . . . , yn}

Written as concatenations αβ of
◮ outcomes α over {x1, . . . , xn} and
◮ outcomes β over {y1, . . . , yn}

Let α be an outcome over {x1, . . . , xn}
◮ xi 7→ yi
◮ ¬xi 7→ ¬yi
◮ ᾱ
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From GCP-nets to CP-nets

For a sequence s = α0α1 . . . αm of outcomes over V
L(s) = α0ᾱ0α0ᾱ1α1ᾱ1 . . . αmᾱm

For a sequence t = ǫ0ǫ1 . . . ǫm of outcomes over V ′

Project each ǫi onto V

Remove consecutive duplicate outcomes until no consecutive
duplicates

L′(t)
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From GCP-nets to CP-nets

With these definitions
If s is an improving sequence from α to β in C, then L(s) is an
improving sequence from αᾱ to ββ̄ in C′

If t is an improving sequence from αᾱ to ββ̄ in C′, then L′(t) is an
improving sequence from α to β in C

C is consistent if and only if C′ is consistent

Thus
Testing dominance in a locally consistent GCP C can be reduced
to testing dominance in a CP-net C′ (PSPACE-hardness of the
latter follows)

PSPACE-hardness of consistency of CP-nets follows in the same
way
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If t is an improving sequence from αᾱ to ββ̄ in C′, then L′(t) is an
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Discussion

Our results extend to
The class of GCP-nets with non-binary variables

Dominance and consistency for preference theories (Wilson,
2004)

Open problems – complexity
Conjunctive and tabular CP-net dominance and consistency?

Conjunctive and tabular acyclic CP-net dominance

Complexity of reasoning with GCP-nets, CP-nets and acyclic
CP-nets whose variables have bounded number of parents
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Discussion

Problems on implicitly defined graphs
The improving flip graph

STRIPS planning graphs

Upper bounds on flipping sequences needed to demonstrate
dominance

Lower bounds – showing what cannot be in general bested

Algorithms
Find classes of GCP-nets (in particular classes of acyclic
CP-nets) where efficient algorithms can be found
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