Mar. 2006, Vol.21, No.2, pp.261-264 J. Comput. Sci. & Technol.

Determining Knots by Minimizing Energy*

Cai-Ming Zhang!? (3% Bf), Hui-Jian Han' (5 Z{d#), and Fuhua Frank Cheng® (¥ 4£)

! Department of Computer Science and Technology, Shandong Economic University, Jinan 250014, P.R. China
28chool of Computer Science and Technology, Shandong University, Jinan 250061, P.R. China

3 Department of Computer Science, University of Kentucky, Lexington, KY 40506, U.S.A.

E-mail: czhang@sdu.edu.cn

Revised January 18, 2006.

Abstract A new method for determining knots to construct polynomial curves is presented. At each data point, a quadric
curve which passes three consecutive points is constructed. The knots for constructing the quadric curve are determined
by minimizing the internal strain energy, which can be regarded as a function of the angle. The function of the angle is
expanded as a Taylor series with two terms, then the two knot intervals between the three consecutive points are defined by
linear expression. Between the two consecutive points, there are two knot intervals, and the combination of the two knot
intervals is used to define the final knot interval. A comparison of the new method with several existing methods is included.
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1 Introduction

The problem of constructing parametric interpolat-
ing curves is of fundamental importance in computer
alded geometric design/modeling, scientific computing
and computer graphics. The constructed curve is often
required to be smooth and as well as to have the shape
suggested by the data points.

The construction of a smooth and visually pleas-
ing parametric interpolating curve requires not only a
good interpolation method, but also appropriate choice
of the parameter knots. Three methods have been pro-
posed for non-uniform parametrization, namely, chord
length method, centripetal modell’) and adjusted chord
length method[>P-111 | (referred as Foley’s method). Ex-
perimental results show that, approximationwise, none
of these methods has obvious advantage over the other
ones. As far as pleasantness is concerned, centripetal
model and Foley’s method produce better results than
the chord length method. Although these methods are
widely used in constructing parametric curves, there are
many occasions in which none of these methods can
produce a satisfactory result. In those cases, the con-
structed curves using knots chosen by these methods are
obviously different from the shape suggested by the data
points. In [3], a new method for determining knots is
presented (referred as ZCM method). The knots are de-
termined using a global method. The determined knots
can be used to construct interpolants which reproduce
parametric quadratic curves if the interpolation scheme
reproduces quadratic polynomials.

A new method for choosing knots is presented in this
paper. The method first minimizes the internal strain
energies of two quadric curves, then the knots are deter-
mined by a combination of the two knots corresponding
to the two quadric curves. Experiments showed that the
curves constructed using the knots by the new method

knots, interpolation curve, strain energy, shape preserving

generally has the visually pleasing shape suggested by
the given data points.

2 Basic Idea

Let P, = (z;,9:), 1 < i < n, be a set of distinct
data points. The goal is to choose a knot t; for P;,
1=1,2,...,n. The knot should be chosen so that when
used to construct a parametric interpolant P(t) to P;,
i =1,2,...,n with the existing methods, P(t) should
be with a visually pleasant shape suggested by the data
points.

It is supposed that at and near each point P;, P(t)
can be approximated by a curve segment P;(¢) which
passes three points P;_1, P;, P;+1, as shown in Fig.1.
Corresponding to P;(t) and P;yq(t), there are two sets
of knots t; and t; 1, between P; and P;;;, the knot in-
terval ¢;4.1 — t; is determined by the combination of the
two sets of knots.
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Fig.1. Angle ;.
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For the three knots ¢;_1, t; and ¢;4; corresponding
to P;_1, P; and P;, 1, respectively, let

t=ti—1 + (tiy1 — tiz1)s,
{ 1)

si=(t; —ti—1)/(tix1 —tiz1)-

Then, the quadric curve Q;(t) = (z;(s),v:(s)) that in-
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terpolates the three points is defined by

e s)p  pyyp (2)
1-— S;
where 0 < s < 1, s; is a variable to be determined be-
tween 0 and 1.

There are different methods for choosing knots. The
knots can be chosen by the way in which the curve is
parameterized or by the way in which the shape of the
curve is constructed. It is generally accepted that Q;(s)
would have a desirable shape if it has the minimum
internal strain energy. The idea here is to choose an
s; that would make Q;(s) have the minimum internal
strain energy, and hence make Q;(s) have a desirable
shape. Thus s; is determined by minimizing the follow-
ing objective function:

G(si):/[%rdw, (3)

where k(w) is the curvature of Q;(s), defined as a func-
tion of the arc length of Q;(s).

If the magnitude of the first derivative of @;(s) is
close to a constant or the arc length of Q;(s) is chosen
as its parameter, then the objective function (3) can be
approximated by

1 1
Gls) = | 1QHe)Pas.

where C' is a constant.
Straightforward computation shows that

2 cos o d?
- ~d; 1d; 71),
s2 si(1—s;) 1di + (1—s;)?

i(d?—1

G(si) = e

where d; denotes the distance from P; to P41, and «;
the angle between the vectors P;_1P; and P;P; 1, as
shown in Fig.1.

The free variable s; is determined by

dsi

—0. (4)

The solution of (4) is a function of ;. For special cases,
we have the following Theorem.

Theorem. For a; =0, o; = 7/2 and «; = w, set-
ting

di—1
- 5
di—1+d;’ ®)
a2
. N (6)
il + 2
a2
= 1/2 : 1/2° (7)
2 4 d

i— 7

S; =
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respectively, makes the objective function (4) reach its
minimum values.

If P,_q1, P; and P;;; are collinear, and s; is defined
by (5), then Q; is a straight line.

Substituting (7) into Q;(s) (2), one gets
|dQ.(s;)/ds| = 0. This means that if vectors P,_1P;
and P; P, are of opposite direction, and s; is defined
by (7), then |dQ;(s;)/ds| = 0. If Q,(s) is viewed as the
trajectory of a particle, |dQ;(s;)/ds| = 0 means that the
speed of the particle is zero when passing through the
point P;. The zero speed makes it easy for the particle
to turn around at P;.

3 Determining Knot Interval ¢,,; — ¢;

Based on (5)—(7), s; can be expressed as a function
of «; as follows

f(e
oA
alad) 4 gf(e)

where f(0) =1, f(n/2) =2/3 and f(7) =1/2.

It follows from (1) that ¢;; —¢t; can also be regarded
as a function of ay, i.e., t;y1 —t; = t(e;), then t;11 — t;
can be expanded as a Taylor series at a; =0

dt(0)

oot 0ld)  (®)

tiv1 —t; = t(O) +

For a; = 0, setting ti 7ti—1 = di—l and ti+1 7ti = dl
will make P;(s) being a straight line, this is a natural
choice. Thus we have ¢(0) = d;. Since ;11 —t; = d; and
t; —ti1 =d; 1 at a; = 0, it follows from (8) that, for
0< a; <7, t;—t;—1 and t;41 —t; can be approximated
by the first and second terms of their Taylor expansions
as follows:

{ ti—ti1 = di—1(1 + bio; /),
ti+1 — ti = dl(l + aiai/w).
where b; and a; are to be determined. Note that (9)

satisfies (5) for a; = 0.
Based on (9), (1) can be written as

(9)

di,1(7r + bzal)
di—1(m + b)) + di(m + a;04)

= S; (10)
It follows from (10) and Theorem that the values of

a; and b; can be approximated by the following equa-
tions

2
di—1(1+b;/2) . d?
di 1(14+b;/2)+d;(1+a;/2) 2 27
b+ d(rars) 2
1
d;—1(1+b;) odzy
(l+b)+di(lta) LI 1
1(14+b;) +di(1 4+ a;) a2, +d?
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The solutions are
1 1
— (_di \3 di )6
h=(a)" + (#)° -

= (%) + (%)

We now discuss how to determine the value of

(11)

=
[

- 1.

tix1 — t;. From the second case in (9), one gets an
approximated value of ¢;;1 — t;. By working with a; 1
using P;, P; 1 and P; 5, one gets another approximated
value of ¢;;; — t;. Considering the second term of the
Taylor series, t;41 — t; can be written as the following
more general forms

{ tivr —t; = di(1+ i), (12)

where p; = (1 + A;)a;a;, N; = (14 B;)bir1041, with
A; and B; being unknown.

These two expressions can be used to define ¢,,1 —t;.
Since the formation of t; 1 —t; is related to both «; and
it+1, tit1 — t; should be defined as a combination of
these two expressions.

tit1 — ti = di(1 4+ wip; + (1 —wi)N;), (13)

where t; = a3 = a, =dy =d,4+1 =0,

di_1+d;
di—1+2d; +di

w; = (14)
is a weight function. (13) holds for ¢ =1,2,.
By testing many sets of data points, the following

values of A; and B; has been proven to be a better
choice to define ¢;,1 — t;

{ A; = pd;_1/d;,
B; = pdii1/d;

..,n—1

(15)

with 1 < p < 2 being a parameter to control the shape
of the curve (in general case, p = 1).

4 Discussion

For evenly spaced data points, knots defined by (13)
generally produce better results when applied to cubic
spline interpolation. Fig.2 are several examples. The
data points used to produce the curves are defined by

P; =(0,0), P,=(1,0),

P, = P34+ (—2cos(as),2sin(as)),
Py = (P +wh)/(1+w),

Ps = Py + (2cos(ay), 2sin(ay)),
P5 = (P4/w + PG)/(]./OJ + 1)

(16)

where w > 0.

(@) (b)

(c) (d)

Fig.2. (a) ag = —37/4, aa = 37 /4. (b) azg = —7/4, as = —37/4.
(c) ag =11, ag = —37/4. (d) a3 = —37/4, au = —7/4.

The curves shown in Fig.2 are cubic spline curves
interpolating the data points (marked by symbol “+”)
defined by (16) by taking w = 1 and varying a3 and ay.

The experiments show that the knots by (13) pro-
duce satisfactory cubic spline curves for w, as and a4
satisfying 0 < w < 1.5, 0 < a3 < 37/4 and —37/4 <
ay < 37/4.

For unevenly spaced data points, the values of some
di_1/d; and d;y1/d; could become larger and, conse-
quently, lead to large t; 1 —t; and unsatisfactory results.
This shortcoming can be overcome by redefining ¢; 11 —t;
as follows.

tiv1 —ti = di(1+ wif; + (1 — wi)Ay), (17)
i, lf Hi < Ri,
Hi= Ki + M, otherwise
L+ pi — ki
)\i, if )\z < Ki,
= N — K
’ Ki + ﬁ, otherwise

where p; and \; are defined by (12), and

+ /205041

d; 1
di_1+d;

dit1
di +ditq

KR; =

5 Experiments

Three sets of representative data points have been
used to compare the new method with the centripetal,
Foley’s and ZCM methods. The comparison is per-
formed using knots determined by these methods in the
construction of a parametric cubic spline curve which
interpolates the given data points.

The three-point difference formula is used to deter-
mine the end conditions of the spline curve. The three
sets of representative data points are Akimal®/, FRN
15A1) and Brodliel?! data points. The curves generated
by these methods are shown in Figs. 3 and 4, where the
symbol “+” denotes the location of a given data point,

figures (a), (b), (c¢) and (d) are produced by the
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@ (b)

(© (@

Fig.3. FRN 15A!4l data points.

(@) (b)

(©) (d)
Fig.4. Brodliel8l data points.

centripetal model, Foley’s, ZCM and new methods, re-
spectively. The result for Akimal®! data are not shown
as it is similar to the one shown in Fig.3.

6 Conclusions

A new method of choosing knots for parametric poly-
nomial interpolation process is presented. The knots are
determined by minimizing the internal strain energy of
an interpolation curve. Experiments also show that the
curves constructed using the knots by the new method
generally has the visually pleasing shape suggested by
the given data points.

It should be pointed out that for the curve that
changes rapidly, its strain energy cannot be approxi-
mated by a simple objective function. In this case, the
method presented in this paper might not give better

J. Comput. Sci. & Technol., Mar. 2006, Vol.21, No.2

results. This problem will be our future research work.

References

[1] Lee E T Y. Choosing nodes in parametric curve interpolation.
CAD, 1989, 21(6): 363-370.

[2] Farin G. Curves and Surfaces for Computer Aided Geometric
Design: A Practical Guide. Academic Press, 1988.

[3] Zhang C, Cheng F, Miura K. A method for determing knots
in parametric curve interpolation. CAGD, 1998, 15: 399-416.

[4] Fritsch F N, Carlson R E. Monotone piecewise cubic interpo-
lation. SIAM J. Numer. Anal., 1980, 17: 238—-246.

[5] Akima H. A new method of interpolation and smooth curve
fitting based on local procedures. J. ACM, 1970, 17(4): 589—
602.

[6] Brodlie K W (ed.). A Review of Methods for Curve and Func-
tion Drawing. Mathematical Methods in Computer Graphics
and Design, London, UK: Academic Press, 1980, pp.1-37.

Cai-Ming Zhang is a professor
and Ph.D. supervisor in the School
of Computer Science and Technol-
ogy at Shandong University. He is
now also the dean and professor of
the School of Computer Science and
Technology at the Shandong Eco-
nomic University. He received the
B.S. and M.E. degrees in computer
science from Shandong University in
1982 and 1984, respectively, and the Dr. Eng. degree in com-
puter science from the Tokyo Institute of Technology, Japan,
in 1994. From 1997 to 2000, Dr. Zhang has held visiting
position at the University of Kentucky, USA. His research
interests include CAGD, CG, information visualization and

medical image processing.

Hui-Jian Han is an associate
professor in the Computer School of
Shandong Economic University. He
received the M.E. degree in computer
science from Shandong University in
2003. His current research interests
include computer graphics, informa-
tion visualization and CAGD.

Fuhua Frank Cheng is a pro-
fessor of computer science and super-
visor of the Graphics and Geomet-
ric Modeling Lab at the University
of Kentucky where he joined the fac-
ulty in 1986. He received the B.S. and
M.S. degrees in mathematics from the
“National Tsing Hua University” in
1973 and 1975, respectively, the M.S.
degree in mathematics, the M.S. de-
gree in computer science, and the Ph.D. degeree in applied
mathematics and computer science from the Ohio State Un-
versity, in 1978, 1980 and 1982, repectively. Dr. Cheng
has held visiting positions at the University of Tokyo and
the Unversity of Aizu, Japan. His research interests in-
clude computer aided geometric modeling, computer graph-
ics, and parallel computing in geometric modeling and com-
puter graphics.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


