Near-Optimum Adaptive Tessellation
of General Catmull-Clark Subdivision Surfaces

Shuhua Lai and Fuhua (Frank) Cheng (University of Kentucky)

Graphics & Geometric Modeling Lab, Department of Computer Science,
University of Kentucky, Lexington, Kentucky 40506-0046,
{slai2|cheng}@cs.uky.edu

Abstract. A new adaptive tessellation method for general Catmull-
Clark subdivision surfaces is presented. Development of the new method
is based on the observation that optimum adaptive tessellation for render-
ing purpose is a recursive error evaluation and globalization process. The
adaptive tessellation process is done by generating an inscribing poly-
hedron to approximate the limit surface for each individual patch. The
inscribing polyhedron is generated through an adaptive subdivision on
the patch’s parameter space driven by a recursive error evaluation pro-
cess. This approach generates less faces in the resulting approximating
mesh while meeting the given precision requirement. The crack problem
is avoided through globalization of new vertices generated in the adap-
tive subdivision process of the parameter space. No crack-detection or
crack-elimination is needed in the adaptive tessellation process. There-
fore, no mesh element splitting to eliminate cracks is necessary. The new
adaptive tessellation method can precisely measure the error for every
point of the limit surface. Hence, it has complete control of the accuracy
of the tessellation result.

1 Introduction

Catmull-Clark subdivision scheme provides a powerful method for building smooth
and complex surfaces. Given a control mesh, a Catmull-Clark subdivision sur-
face (CCSS) is generated by iteratively refining (subdividing) the control mesh to
form new and finer control meshes [3]. Subdivision surfaces can model/represent
complex shape of arbitrary topology because there is no limit on the shape and
topology of the control mesh of a subdivision surface [3]. But the number of
faces in the uniformly refined meshes increases exponentially with respect to
subdivision depth. Adaptive tessellation reduces the number of faces needed to
yield a smooth approximation to the limit surface and, consequently, makes the
rendering process more efficient.

2 Previous Work

A number of adaptive tessellation methods for subdivision surfaces have been
proposed [9, 1,13, 10, 4, 14]. Most of them are mesh refinement based, i.e., approx-
imating the limit surface by adaptively refining the control mesh. This approach

requires the assignment of a subdivision depth to each region of the surface first.
Several other adaptive tessellation schemes have been presented as well [1, 10, 4].
A common problem of these schemes is that they all have to develop complicated
process to prevent the occurance of cracks.

In addition to various adaptive tessellation schemes, there are also applica-
tions of these techniques. In [8] adaptive tessellation method is used to render
terrain and in [7] adaptive tessellation is combined with ray tracing techniques
to generate some realistic scenes. Adaptive tessellation is so useful that an API
has been designed for its general usage [11]. Actually hardware implementation
of this technique has been reported recently as well [2].

A problem with mesh-refinement-based, adaptive tessellation techniques is
the possible over-tessellation problem. Each region, such as a patch, where a
subdivision depth is assigned is uniformly subdivided to the level specified by
the subdivision depth. Since the subdivision depth is computed based on the
largest possible curvature of the region, parts of the region which do not carry
such a large curvature will be unnecessarily subdivided.

Another problem is the so called crack-prevention requirement. Because the
number of new vertices generated on the boundary of a region depends on the
subdivision depth, cracks would occur between adjacent regions if these regions
are assigned different subdivision depths. Hence, such an adaptive tessellation
method needs special mechanism to eliminate cracks. This is usually done by
performing additional subdivision or splitting steps on the region with lower
subdivision depth. As a result, many unnecessary mesh elements are generated.

3 Basic Idea

Given the control mesh of a CCSS and an error tolerance, €, the goal is to
generate an approximating polyhedron mesh close enough to the limit surface
S(u,v), i.e., within the error tolerance of S(u,v), but with as few mesh faces as
possible, so that the rendering process of S(u, v) can be performed efficiently. An
approximating polyhedron mesh with the least number of mesh faces is called
an optimum approximating polyhedron mesh.

Our first goal is to avoid the possible over-tessellation problem. It is easy to
see that, to achieve such a goal, tessellation process within each patch should
also be performed based on the flatness of each local region. This can be accom-
plished by doing adaptive subdivision on the parameter space of each patch that
is driven by a recursive error evaluation process. Contrary to the mesh refine-
ment based approaches which generate approximating polyhedra from ‘outside’
the limit surface that usually do not interpolate the limit surface, the approxi-
mating polyhedron generated by this approach is an inscribing polyhedron whose
vertices interpolate the limit surface.

For a patch of S(u,v) defined on [u1,us] X [v1,v2], we approximate it with
the base quadrilateral formed by its four vertices Vi = S(uq,v1), Vo = S(ug,v1),
V3 = S(usg,v2) and V4 = S(uy,vs). If the distance (error) (to be defined below)
between the patch and its base quadrilateral is small than e, the patch is consid-

ered flat enough and is replaced with the base quadrilateral in the tessellation
process. Otherwise, we perform a midpoint subdivision on the parameter space
by setting ujs = (u1 + u2)/2 and via = (v + v2)/2 to get four subpatches:
[U17U12} X ['UlaU12]7 [U127U2] X [Ul,'U12]7 [U12,U2] X [012,02], [Ul, U12] X [U12,112]7 and
repeat the flatness testing (error evaluation) process on each of the subpatches.
The process is recursively repeated until the distances (errors) between all the
subpatches and their corresponding base quadrilaterals are smaller than e. The
vertices of the resulting subpatches are then used as vertices of the inscribing
polyhedron that approximates the limit surface. For example, if the four rectan-
gles in Figure 1(a) are the parameter spaces of four adjacent patches of S(u,v),
and if the rectangles shown in Figure 1(b) are the parameter spaces of the re-
sulting subpatches when the above recursive flatness testing (error evaluation)
process stops, then the limit surface will be evaluated at the points marked with
small solid circles to form vertices of an inscribing approximating polyhedron of
the limit surface.

This is a simple and straightforward process, but the result could be very
significant. Note that each face in the inscribed approximating polyhedron for
a patch is built with the expectation that it is just close enough to the limit
surface but with the maximum possible size. Therefore, if the recursive error
evaluation process can indeed provide precise error estimate, then the approxi-
mating polyhedron mesh generated by this process is optimum or near-optimum
(in case some faces from different sides of a common boundary of two patches
can be merged into a bigger face with the same error size). To ensure that the
approximating polyhedron mesh is precisely constructed, we must also be able to
precisely evaluate a CCSS at any given parameter point. With parametrization
of CCSS becoming available [12, 5], this is always possible now.

@ (b)

Fig. 1. Adaptive subdivision on parameter spaces of patches.

Our second goal is to avoid the crack prevention requirement. Due to the
fact that adjacent patches are usually approximated by base quadrilaterals from
different levels of the midpoint subdivision process, cracks could occur between
adjacent patches. For instance, in Figure 2, the left patch is approximated by one
base quadrilateral but the right patch is approximated by 7 base quadrilaterals.
Consider the boundary shared by the left patch and the right patch. On the left
side, that boundary is approximated by a line segment defined by two vertices,
A5 and Aj;. But on the right side, the boundary is approximated by a polyline

defined by four vertices, Ay, C4, B4, and As. They do not coincide unless Cy
and By lie on the line segment defined by A and As. But this usually is not the
case. Hence, a crack would appear between the left patch and the right patch.
Fortunately Cracks can be removed simply by replacing edges of the base
quadrilaterals with appropriate polylines in the tessellation process. Namely,
each edge of a base quadrilateral should be replaced with a polyline defined
with all the new vertices computed for that edge of the corresponding patch or
subpatch. For example, in Figure 2, all the dashed lines should be replaced with
the corresponding polylines. In particular, edge AsAs of the base quadrilateral
A1A5A5A¢4 should be replaced with the polyline AsCyB4A5. As a result, the
left patch is approximated by the polygon A; A>;C,B4A5Ag, instead of the base
quadrilateral A;AsAsAg, in the tessellation process. For rendering purpose this
is fine because graphics systems like OpenGL can handle polygons with any
number of vertices and the vertices do not have to be co-planar. Note that, with
the above approach, there is no need to perform crack detection at all because
the resulting approximating polyhedron contains no cracks. Besides, since this
process does not increase the number of faces in an approximating polyhedron,
the resulting approximating polyhedron is optimum or near-optimum for the
entire CCSS. For convenience of subsequent reference, the process of replacing

Fig. 2. Cracks between adjacent patches (subpatches).

edges of base quadrilaterals with new polylines is called a base quadrilateral
replacement process.

Note that in previous methods for adaptive tessellation of subdivision sur-
faces [14,9,1,10], the most difficult part is crack prevention. With the above
approach, this part becomes the simplest part to handle and implement.

4 Flatness Testing (Error Evaluation)

In the flatness testing process, to measure the difference between a patch (or
subpatch) and its base quadrilateral, we need to parametrize the base quadrilat-
eral as well. The base quadrilateral can be parametrized with a simple bilinear
interpolation:

Q(u,v) — V2 —U (U2 —U ‘/1 + U—U7 V2) + V—U1 (U2 —U V4 + U—U1 V3) (1)

V2—vV1 ‘U2—U1 U2 —Uq V2—vU1 ‘U2—U1 U2 —uUq

where u1 < u < ug, v1 < v < vy. The difference between the patch (or subpatch)
and the base quadrilateral at (u,v) is defined as

d(uvv) = (Q(ua ’U) - S(uvv)) : (Q(u,v) - S(ua U))T (2)

The distance between the patch (or subpatch) and the base quadrilateral is the
maximum of all the differences:

D = max{ \/d(u,v) | (u,v) € [us,ug] x [v1,v2] }.

To measure the distance between a patch (or subpatch) and the corresponding
base quadrilateral, we only need to measure the norms of all local minima and
maxima of d(u,v). Note that Q(u,v) and S(u,v) are both C'-continuous, and
d(V1), d(Va), d(V3) and d(V4) are equal to 0. Therefore, by Mean Value Theo-
rem, the local minima and maxima must lie either inside [u1, uz2] X [v1,v2] or on
the four boundary curves. In other words, they must satisfy at least one of the
following three conditions:

od(u,v) __ od(u,v) __ dd(u,v)

Ou =0 v =0 Bd?u =0
V=11 Or V= vy U= Uy OF U = Uy 671:)’”):0 (3)
up <u < ug v <v< Uy (u,v) € (uy,uz) X (v1,v2)

For a patch (or subpatch) that is not adjacent to an extraordinary point (i.e.,
(u1,v1) # (0,0)), m is fixed and known (m(u,v) = min{[logiul, [logiv]}).
Hence Eq. (3) can be solved explicitly. With the valid solutions, we can find
the difference for each of them using Eq. (2). Suppose the one with the biggest
difference is (4, ©). Then (4, 9) is also the point with the biggest distance between
the patch (or subpatch) and the corresponding base quadrilateral. The patch (or
subpatch) is considered flat enough if

d(a, o) < € (4)

where € is a given error tolerance. In such a case, the patch (or subpatch) is
replaced with the corresponding base quadrilateral in the tessellation process.

For a patch that is adjacent to an extraordinary point (i.e. (u1,v1) = (0,0) in
Eq. (3)), m is not fixed and m tends to co. As a result, Eq. (3) can not be solved
explicitly. One way to resolve this problem is to use nonlinear numerical method
to solve these equations. But numerical approach cannot guarantee the error is
less than e everywhere. For precise error control, a better choice is needed. In
the following, an alternative method is given for that purpose.

S(u,v) and Q(u,v) both converge to S(0,0) when (u,v) — (0,0). Hence,
for any given error tolerance e, there exists an integer m. such that if m >
me, then the distance between S(u,v) and S(0,0) is smaller than €/2 for any
(u,v) €10,1/2™] x [0,1/2™], and so is the distance between Q(u,v) and S(0,0).
Consequently, when (u,v) € [0,1/2™] x [0,1/2™], the distance between S(u,v)
and Q(u,v) is smaller than e. The value of m., in most of the cases, is a relatively
small number and can be explicitly calculated [6].

For other regions of the unit square with [log 1 us] < m < me, eq. (3) can
be used directly to find the difference between S(u,v) and Q(u,v) for any fixed
m € ([log uz], me). Therefore, by combining all these differences, we have the
distance between the given extra-ordinary patch (or subpatch) and the corre-
sponding base quadrilateral. If this distance is smaller than e, we consider the
given extra-ordinary patch (or subpatch) to be flat, and use the base quadrilat-
eral to replace the extra-ordinary patch (or subpatch) in the tessellation process.
Otherwise, repeatedly subdivide the patch (or subpatch) and perform flatness
testing on the resulting subpatches until all the subpatches satisfy Eq. (4).

5 Making Patches Visible to Each Other

Currently, all the subdivision surface parametrization and evaluation techniques
are patch based [12, 5]. Hence, no matter which method is used in the tessellation
process, a patch cannot see vertices evaluated by other patches from its own
(local) structure even though the vertices are on its own boundary. For example,
in Figure 2, vertices C4 and By are on the shared boundary of the left and the
right patches. But the left patch can not see these vertices from its own structure
because these vertices are not evaluated by this patch. So, the key here is to
make adjacent patches visible to each other so that new vertices computed by
one patch for the shared boundary can be accessed by the other patch. We call
this process a globalization process.

To make adjacent patches visible to each other and to make subsequent base
quadrilateral replacement process easier, one should assign a global index ID to
each evaluated vertex so that all the evaluated vertices with the same 3D position
have the same index ID. Global indexing allows subsequent processing to be
performed on individual patches but still with a global visibility. We also need
a step called adaptive marking to facilitate the base quadrilateral replacement
process. The purpose of adaptive marking is to mark those points in uv space
where the limit surface should be evaluated. With the help of the global index
ID, this step can be done on an individual patch basis. Initially, all (u, v) points
are marked ‘white’. If surface evaluation should be performed at a point and the
resulting vertex is needed in the tessellation process, then that point is marked
in ‘black’. This process can be easily implemented as a recursive function. A
pseudo code for this step is given below.

AdaptiveMarking(P, uy, ug, v1, v2)
1. Evaluate(P, uj, us, v1, vz) and AssignGloballD(P, uy, ug, v1, v2);
2. if (FlatEnough(P, uy, us, v1, v2)) then MarkBlack(P, uy, usg, v1, v2);
3. else
4. Set U2 = (Ul + UQ)/Q; Vig = (’U1 + U2)/2;
5. AdaptiveMarking(P, w1, u12, v1, v12);
6 AdaptiveMarking(P, ui2, ua, v1, v12);
7 AdaptiveMarking(P, uis, us, v12, v2
8 AdaptiveMarking(P, uy, u12, v12, v2

);
)

3

T+
'7..-'.'."’:'.:':.’.?

(a) Uniform (b) Adaptive

Qe
Vs
gt
roasiiing

(e) Uniform (f) Adaptive (g) Adaptive (h) Adaptive

Fig. 3. Adaptive tessellation of surfaces with arbitrary topology.

This routine adaptively marks points in the parameter space of patch P.
Function ‘Evaluate’ evaluates limit surface at the four corners of patch or sub-
patch P defined on [u1,us] X [v1,v2]. Function ‘AssignGlobelD’ assignes global
index ID to the four corners of P. Function ‘FlatEnough’ uses the method given
in Section 4 and Eq. (4) to tell if a patch or subpatch is flat enough. Func-
tion ‘MarkBlack’ marks the four corners of patch or subpatch P defined on
[u1,us] X [v1,v9] in black. All the marked corner points will be used in the tes-
sellation process.

6 Implementation and Test Results

The proposed approach has been implemented in C++ using OpenGL as the sup-
porting graphics system on the Windows platform. Some of the tested results are
shown in Fig. 3. All these testing models have some extra-ordinary points in the
input meshes. For the Venus model, uniform subdivision (Fig. 3(a)) generates
65536 polygons, while with a similar or higher accuracy, adaptive tessellation
only requires 29830, 21841, and 9763 polygons for Fig. 3(b), 3(c) and 3(d) re-
spectively. For the Beethoven model, uniform subdivision (Fig. 3(e)) generates
65536 polygons, while with a similar or higher accuracy, adaptive tessellation

only requires 20893, 15622, and 7741 polygons for Fig. 3(f), 3(g) and 3(h), re-
spectively. Hence the proposed method indeed significantly reduces the number
of faces in the resulting tessellation while satisfying the given error requirement.

7 Summary

A new adaptive tessellation method for general CCSSs is presented. The method
is developed for rendering purpose and is based on the observation that optimum
adaptive tessellation for rendering purpose is a recursive error evaluation and
globalization process for indivisual patches. For a CCSS with multi-patches, the
result of our work can be improved by running a post-processor to see if some
faces from different sides of a patch boundary can be merged into a bigger face
with the same error size. However, since the improvement is not significant and
the computation is costly, it might not be worth the effort to do so.

Acknowledgement: Research work of the authors is supported by NSF under
grants DMS-0310645 and DMI-0422126. Data sets for Fig. 3 are downloaded
from the web site: http://research.microsoft.com/~hoppe .

References

1. Amresh A, Farin G, Razdan A, Adaptive Subdivision Schemes for Triangular
Meshes, Hierarchical and Geometric Methods in Scientific Visualization, 2002.

2. M. Boo, M. Amor, M. Doggett, et.al., Hardware Support for Adaptive Subdivision
Surface Rendering, SIGGRAPH workshop on Graphics hardware 2001, pp:33-40.

3. Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topolog-
ical meshes, Computer-Aided Design, 1978, 10(6):350-355.

4. Isenberg T, Hartmann K, Konig H, Interest Value Driven Adaptive Subdivision,
In Simulation und Visualisierung, March 6-7, 2003, Magdeburg, Germany.

5. Lai S, Cheng F, Parametrization of General Catmull Clark Subdivision Surfaces
and its Application, Computer Aided Design € Applications 3, 1-4, 2006.

6. Lai S, Cheng F, Near-Optimum Adaptive Tessellation of General Catmull-Clark
Subdivision Surfaces (complete version), www.cs.uky.edu/~cheng/PUBL/adaptive.pdf.

7. Miiller K, Techmann T, Fellner D, Adaptive Ray Tracing of Subdivision Surfaces
Computer Graphics Forum Vol 22, Issue 3 (Sept 2003).

8. Rose D, Kada M, Ertl T, On-the-Fly Adaptive Subdivision Terrain. In Proceedings
of the Vision Modeling and Visualization Conference, pp: 87-92, Nov. 2001.

9. Settgast V, Miiller K, Fiinfzig C, et.al., Adaptive Tesselation of Subdivision Sur-
faces, In Computers € Graphics, 2004, pp:73-78.

10. Smith J, Séquin C, Vertex-Centered Adaptive Subdivision,
www.cs.berkeley.edu/~jordans/pubs/vertexcentered.pdf.

11. Sovakar A, Kobbelt L, API Design for adaptive subdivision schemes. 67-72, Com-
puters € Graphics, 28, 1, Feb. 2004.

12. Stam J, Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Pa-
rameter Values, Proceedings of SIGGRAPH 1998:395-404.

13. Wu X, Peters J, An Accurate Error Measure for Adaptive Subdivision Surfaces,
In Shape Modeling International, 2005.

14. Yong J, Cheng F, Adaptive Subdivision of Catmull-Clark Subdivision Surfaces,
Computer-Aided Design & Applications 2(1-4):253-261, 2005.

