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Abstract

A new subdivision depth computation technique for
extra-ordinary Catmull-Clark subdivision surface (CCSS)
patches is presented. The new technique improves a pre-
vious technique by using a matrix representation of the
second order norm in the computation process. This en-
ables us to get a more precise estimate of the rate of con-
vergence of the second order norm of an extra-ordinary
CCSS patch and, consequently, a more precise subdivi-
sion depth for a given error tolerance.

Keywords: subdivision surfaces, subdivision depth com-
putation

1 Introduction

Given a Catmull-Clark subdivision surface (CCSS) patch,
subdivision depth computation is the process of determin-
ing how many times the control mesh of the CCSS patch
should be subdivided so that the distance between the re-
sulting control mesh and the surface patch is smaller than
a given error tolerance. Good subdivision depth compu-
tation techniques are important because they allows us to
meet precision requirement in applications such as trim-
ming, finite element mesh generation, boolean operations,
and tessellation of a CCSS without excessively subdivid-
ing its control mesh.

A good subdivision depth computation technique re-
quires precise estimate of the distance between the con-
trol mesh of a CCSS patch and its limit surface. Op-
timum distance evaluation techniques for regular CCSS
patches are available [4, 11]. Distance evaluation for an
extra-ordinary CCSS patch is more complicated. A first
attempt in that direction is done in [4]. The distance
is evaluated by measuring norms of the first order for-
ward differences of the control points. Since first order
forward differences can not measure the curvature of a
surface but its dimension, the distance computed by this
approach is usually bigger than what it really is for re-
gions already flat enough and, consequently, leads to over-
estimated subdivision depth.

An improved distance evaluation technique for extra-
ordinary CCSS patches is presented in [5]. The distance

is evaluated by measuring norms of the second order for-
ward differences (called second order norms) of the con-
trol points of the given extra-ordinary CCSS patch. Since
second order forward differences can measure both height
and width of a region, the distance computed by this ap-
proach reflects curvature of the patch and, hence, leads
to reasonable subdivision depths for regions already flat
enough. However, it has been observed recently that,
for extra-ordinary CCSS patches, the convergence rate
of second order norm changes with the subdivision pro-
cess, especially between the first subdivision level and the
second subdivision level. Therefore, using a fixed con-
vergence rate in the distance evaluation process for all
subdivision levels would over-estimate the distance and,
consequently, over-estimate the subdivision depth as well.

In this paper we present an improved subdivision depth
computation method for extra-ordinary CCSS patches.
The new technique uses a matrix representation of the
maximum second order norm in the computation process
to generate a recurrence formula. This recurrence for-
mula allows the smaller convergence rate of the second
subdivision level to be used as a bound in the evaluation
of the maximum second order norm and, consequently,
leads to a more precise subdivision depth for the given
error tolerance.

The remaining part of the paper is arranged as follows.
A brief review of the background is given in Section 2. A
matrix based subdivision depth computation technique
for extra-ordinary CCSS patches is presented in section
3. Examples showing the new technique improves the old
one are presented in Section 4. Concluding remarks are
given in Section 5.

2 Problem Formulation and Back-
ground

Given the control mesh of an extra-ordinary CCSS patch
and an error tolerance e, the goal here is to compute an
integer d so that if the control mesh is iteratively refined
(subdivided) d times, then the distance between the re-
sulting mesh and the surface patch is smaller than €. d
is called the subdivision depth of the surface patch with



respect to €. Before we show the new computation tech-
nique, we need to define related terms and review the
previous, second order norm based distance evaluation
and subdivision depth computation techniques for extra-
ordinary CCSS patches [5]. Some of these techniques are
needed in the new technique to be presented in Section 3.

2.1 Catmull-Clark Subdivision Surfaces

Given a control mesh, by iteratively applying the
Catmull-Clark subdivision scheme [2] to refine (subdivide)
the control mesh, we get a sequence of refined control
meshes. The limit surface of the refined control meshes is
called a Catmull-Clark subdivision surface (CCSS). The
refining process consists of defining new vertices (face
points, edge points and vertex points) and connecting the
new vertices to form new edges and faces of a new con-
trol mesh. The control mesh of a CCSS patch and the
new control mesh after a refining (subdivision) process
are shown in Figures 1(a) and 1(b), respectively. This is
a conceptual drawing, the location shown for a new vertex
might not be its exact physical location.
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Figure 1: (a) Control mesh of an extra-ordinary patch; (b)
new vertices and edges generated after a Catmull-Clark
subdivision.

The limit surface of the iteratively refined control
meshes is called a subdivision surface because the mesh
refining process is a generalization of the uniform bicubic
B-spline surface subdivision technique. Therefore, CCSSs
include uniform B-spline surfaces and piecewise Bézier
surfaces as special cases. Actually CCSSs include non-
uniform B-spline surfaces and NURBS surfaces as special
cases as well [13]. The Catmull-Clark mesh refining pro-
cess sometime will also be called a Catmull-Clark subdi-
vision, or simply a subdivision step. The given control
mesh will be referred to as Mg and the limit surface will
be referred to as S. For each positive integer k, My, refers
to the control mesh obtained after applying the Catmull-
Clark subdivision & times to M.

2.2 Regular vs. Extra-ordinary

The power of CCSSs comes from the way mesh vertices
are connected. If the number of edges incident to a mesh

vertex is called its walence, then the valence of an inte-
rior mesh vertex can be anything > 3, instead of just four.
Those mesh vertices whose valences are different from four
are called eztra-ordinary vertices to distinguish them from
the standard or reqular mesh vertices. Vertex V in Fig-
ure 1(a) is an extra-ordinary vertex of valence five. An
interior mesh face is called an extra-ordinary mesh face
if it has an extra-ordinary vertex. Otherwise, a standard
or regular mesh face. Mesh face F in Figure 1(a) is an
extra-ordinary mesh face. Note that after one iteration
of the subdivision step, mesh faces of a CCSS are always
quadrilaterals and the number of extra-ordinary vertices
remains the same. After at most two iterations of the
subdivision step, each mesh face has at most one extra-
ordinary vertex. Therefore, without loss of generality, we
shall assume all the mesh faces in My are quadrilaterals
and each mesh face of M has at most one extra-ordinary
vertex.

For each interior face F of My, k > 0, there is a
corresponding patch S in the limit surface S. F and
S can be parametrized on the same parameter space
Q = 1[0, 1] x [0, 1] [14]. F is a bilinear rule surface.
S is a uniform bicubic B-spline surface patch if F is a
regular face. If F is an extra-ordinary face then S, de-
fined by 2n + 8 control points where n is the valence of
F’s extra-ordinary vertex, can not be parametrized as a
uniform B-spline patch. In such a case, S is called an
extra-ordinary surface patch. Otherwise, a regular surface
patch or standard surface patch. The control mesh shown
in Figure 1(a) is the control mesh of an extra-ordinary
surface patch whose extra-ordinary vertex is of valence
five.

2.3 Distance and Subdivision Depth

For a given interior mesh face F, let S be the correspond-
ing patch in the limit surface S. The control mesh of S
contains F as the center face. If we perform a subdivision
step on the control mesh, we get four new mesh faces in
the place of F. This is the case no matter F is a regular
face or an extra-ordinary face. See Figure 1(b) for the
four new faces Foo, F19, Fo1 and F1; in the place of the
extra-ordinary face F shown in Figure 1(a). Since each
of these new faces corresponds to a quarter subpatch of
S, we shall call these new faces subfaces of F even though
they are not pyhsically subsets of F. Therefore, each sub-
division step generates four new subfaces for the center
face F of the control mesh. Because the correspondence
between F and S is one-to-one, sometime, instead of say-
ing performing a subdivision step on S, we simply say
performing a subdivision step on F.

The distance between an interior mesh face F and the

corresponding patch S is defined as the maximum of
1 (u,v) = S(u,v)]|:

(1)

Dp = maz (yv)eq [[F(u,v) = S(u, v)]|



where 2 is the unit square parameter space of F and S.
Dy is also called the distance between S and its control
mesh. For a given € > 0, the subdivision depth of F with
respect to € is a positive integer d such that if F is recur-
sively subdivided d times, the distance between each of
the resulting subfaces and the corresponding subpatch is
smaller than e.

2.4 Distance Evaluation for a Regular

Patch

Figure 2: Definition of L(u,v) = (1 —v)L1(u) +vLa(u) =
(1 —u)Ly(v) + uLa(v).

Let S(u,v) be a uniform bicubic B-spline surface patch
defined on the unit square Q = [0,1] x [0,1] with con-
trol points V;;, 0 < 4,5 < 3, and let L(u,v) be
the bilinear parametrization of the center mesh face
{V1’17V271,V2’2,V172} (see Figure 2)

L(u,v) = (1—0)[(1 —u)Vi1+uVaq]
+o[(1 —u)Via+uVas], 0<u,v <L
The distance between S(u,v) and L(u,v) satisfies the
following relationship [4].

Lemma 1: The distance between L(u,v) and S(u,v)
satisfies the following inequality

max - ||L(u,v) = S(u,v)[| < oM

0<u,v<1

W =

where M is the second order norm of S(u,v) defined as

follows
M = max,-,j{ ||2Vz’] — Vz'fl,j

12V — Vi

— Vil

+1,]|| (2)

= Vijnll}

2.5 Subdivision Depth Computation for
Extra-Ordinary Patches

The distance evaluation mechanism of the previous sub-
division depth computation technique for extra-ordinary
CCSS patches utilizes second order norm as a measure-
ment scheme as well [5], but the pattern of second order

forward differences (SOFDs) used in the distance evalua-
tion process is different from (2). We review the definition
of SOFD pattern used for an extra-ordinary patch and
a recurrence formula for the corresponding second order
norm first.

2.5.1 Second Order Norm and Recurrence For-
mula
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Figure 3: (a) Ordering of control points of an extra-
ordinary patch. (b) Ordering of new control points (solid
dots) after a Catmull-Clark subdivision.

Let V;,i=1,2,...,2n + 8, be the control points of an
extra-ordinary patch S(u,v) = S§(u,v), with V; being
an extra-ordinary vertex of valence n. The control points
are ordered following J. Stam’s fashion [14] (Figure 3(a)).

The control mesh of S(u,v) is denoted II = IIJ. The
second order norm of S, denoted M = M, is defgmed as
the maximum norm of the following 2n + 10 SOFDs:

M = maz{{ [|2V1 — V2; — Voiyn)%nsnll | 1 < i <n}

U {112Va@i%nt1) — Voit1 — Vognin4ll [ 1 < i <n}

U {l2Vs—Va—Vaouys ||, | 2Va — V1 — Vaui7 ||,
[12Vs — Vg — Vonye ||, || 2Vs — Vi — Vo |,
[|2Ve — V1 — Vania ||, || 2V7 — Vg — Va5 ||, (3)
| 2Vant7 — Vange — Vanys ||,
[| 2Vant6 — Vant2 — Vongr ||
| 2Vants = Vango — Vauya ||,

[| 2Vonta — Vonyz —Vongs || 1}

By performing a subdividion step on II, one gets
2n + 17 new vertices V}, i = 1,...,2n + 17 (see Figure
3(b)). These control points form four control point sets
1§, I}, O} and II%, representing control meshes of the
subpatches S}, Si, S} and Si, respectively (see Figure
3(b)) where IT§ = {V} | 1 <i < 2n+ 8 }, and the other
three control point sets I}, I} and II} are shown in
Figure 4. S} is an extra-ordinary patch but S}, S3 and S}
are regular patches. Therefore, second order norm similar
to the one defined in (2) can be defined for Sj, S} and S3,
while a second order norm similar to (3) can be defined
for the control mesh of S[l). We use M; to denote the
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Figure 4: Control vertices of subpatches S}, S} and S1.

second order norm of S}. This process can be iteratively
repeated on S}, SZ, S3, ... etc. We have the following
lemma for a general S§ and its second order norm Mj, [5].

Lemma 2: For any k& > 0, if M}, represents the second
order norm of the extra-ordinary sub-patch S} after k
Catmull-Clark subdivision steps, then M} satisfies the
following inequality

%Mk, n=23
M1 < My, n=>5
(3 + 3280y, n>5

Actually, the lemma works in a more general sense, i.e.,
if M}, stands for the second order norm of the control mesh
M, instead of TI§, the lemma still works. The second
order norm of My is defined as follows: for regions not
involving the extra-ordinary point, use standard SOFDs;
for the vicinity of the extra-ordinary point, use SOFDs
defined in (3). The proof is essentially the same.

2.5.2 Distance Evaluation

To compute the distance between the extra-ordinary
patch S(u,v) and the center face of its control mesh,
F = {V1, Vg, V5, Vy}, we need to parameterize the patch
S(u,v) first.
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Figure 5: Q-partition of the unit square.
By iteratively performing Catmull-Clark subdivision on

S(u,v) = S§, S, SZ, ... etc, we get a sequence of reg-
ular patches { S]* }, m > 1, b =1,2,3, and a sequence

of extra-ordinary patches { S§* }, m > 1. The extra-
ordinary patches converge to a limit point which is the
value of S at (0,0) [8]. This limit point and the regu-
lar patches { S;* }, m > 1, b = 1,2,3, form a parti-
tion of S. If we use €}’ to represent the region of the
parameter space that corresponds to S;" then { Q" },
m > 1, b = 1,2,3, form a partition of the unit square
Q =10,1] x [0,1] (see Figure 5) with

QO = (g gmr] X [0, 3521,

Q3" = [O= 2%] X [sz zm%l]

The parametrization of S(u,v) is done as follows. For
any (u,v) € Q but (u,v) # (0,0), first find the Q}* that
contains (u,v). m and b can be computed as follows.

m(u,v) = min{ [log%uL flog%ﬂ}

1, if2"u>1and2mv <1
bu,v) =< 2, if 2™u>1and2mv >1
3, if2"u<land2mv>1

(5)

Then map this ;" to the unit square with the following
mapping
(u,0) = (tm, Um)

where

2mt,
2mt — 1

if 2mt<1

| ©)
The value of S(u,v) is equal to the value of Sj* at
(um: vm): i-e-:

S(u,v) = Sy (Um, Um)-

Let L} (u, v) be the bilinear parametrization of the center
face of S;*’s control mesh. Since S;* is a regular patch,
following Lemma 1, we have

m m 1 m
IL5" (u,v) = S (w, )|l < S My

where M;" is the second order norm of the contol mesh
of Sy". The second order norm of S;" is smaller than
the second order norm of M,,, M,,. Hence, the above
inequality can be written as

|ILg" (u,v) — Sy (u, v)[| <

M. (7)

W =

If we use L(u,v) to represent the bilinear parametriza-
tion of the center face of S(u,v)’s control mesh F =
{V17 V67 V57 V4}

L(u,v) = (1—v)[(1 —-u)V;+uVg]

+o[(1 —u)Va+uVs], 0<u,v<1



then the maximum distance between S(u,v) and its con-
trol mesh can be written as

Il L(w,v) = S(u,v) ||

<1 Lty 0) — L (e 9 | + L3 (e v) — Sy 0) || )

where 0 < uw,v < 1 and u,, and v, are defined in (6).
The second term on the right hand side of the inequality
can be evaluated using (7). Hence, one only needs to
work with the first term on the right hand side of the
inequality.

It is easy to see that if (u,v) € Q" then (u,v) € QF for
any 0 < k < m where

1
ng = [07 2_k] X [07

o

Qf corresponds to the subpatch SE. This means that
(2%u, 2Fv) is within the parameter space of S§ for 0 <
k < m, ie., (2%u,2%0) = (ug,vr) where u; and v are
defined in (6). Consequently, we can consider L§ (uy, vy)
for 0 < k < m where L} is the bilinear parametrization
of the center face of the control mesh of S (with the
understanding that LY = L and (ug,vy) = (u,v)). Hence,
the first term on the right hand side of (8) can be written
as

[T (u; 0) = Ly (i om )|
< Yo LG (ks vr) — L™ (uprr, vrsed) |

+ LG (wm—1, ¥m—1) = L7 (U v |-

(9)

The following two lemmas are needed in the evaluation
of the right side of the above inequality.

Lemma 3: If (u,v) € Q" where b and m are defined
in (5) then for any 0 < k < m — 1 we have

1

| L (ur, vi) — LT (wrgr, vig) || < ka

where M, is the second order norm of M; and Lg = L.

Lemma 4: If (u,v) € Q" where b and m are defined
in (5) then we have

LG (w1, Vm—1) = L (tn, 0m) ||
%Mmfly ’Lf b=2
<

lefly ’Lf

5 b=1or3

where M,,_; is the second order norm of M,,,_;.

By applying Lemmas 3 and 4 on (9) and then using
(7) on (8), we have the following lemma on the distance
between an extra-ordinary CCSS patch S(u,v) and its
control mesh L(u,v) [5].

Lemma 5: The maximum of || L(u,v) — S(u,v) ||
satisfies the following inequality

M07 n=23
%Mo, n =
L(u,v)—S(u,v) || <
o) Sl § L
4(n27n8n+46) MO’ n>8

(10)
where M = Mj is the second order norm of the extra-
ordinary patch S(u,v).

2.5.3 Subdivision Depth Computation

Lemma 5 can be used to estimate the distance between a
level-k control mesh and the surface patch for any & > 0.
This is because the distance between a level-k control
mesh and the surface patch is dominated by the distance
between the level-k extra-ordinary subpatch and the cor-
responding control mesh which, accoriding to Lemma 5,
is

M, n=3
| Ly (u,v)—S(u,v) || < 2 My, 5<n<8
n’ Mk, n>8

4(n®>—8n+46)

where M), is the second order norm of S(u,v)’s level-k
control mesh My. The previous subdivision depth com-
putation technique for extra-ordinary surface patches is
obtained by combining the above result with Lemma 2 [5].

Theorem 6: Given an extra-ordinary surface patch
S(u,v) and an error tolerance e, if k levels of subdivisions
are iteratively performed on the control mesh of S(u,v),

where
M
k= [logw——‘
Z€

with M being the second order norm of S(u,v) defined in

(3),

%, n=23
25
w = 187 n=>5
4n?
3n218n_46" n>5
and
1, n=3
2 5<n<8
z= 187 SN
27
2(n”—8n+46) n>8

n2 3

then the distance between S(u,v) and the level-k control
mesh is smaller than e.



3 New Subdivision Depth Com-
putation Technique for Extra-
Ordinary Patches

The SOFDs involved in the second order norm of an
extra-ordinary CCSS patch (see eq. (3)) can be classified
into two groups: group I and group II. Group I contains
those SOFDs that involve vertices in the vicinity of the
extra-ordinary vertex (see Figure 6(a)). These are the
first 2n SOFDs in (3). Group II contains the remaining
SOFDs, i.e., SOFDs that involve vertices in the vicinity
of the other three vertices of S (see Figure 6(b)). These
are the last 10 SOFDs in (3). It is easy to see that the
convergence rate of the SOFDs in group II is the same as
the regular case, i.e., 1/4 [4]. Therefore, to study proper-
ties of the second order norm M, it is sufficient to study
norms of the SOFDs in group I. The maximum of these
norms will be called the second order norm of group L.
We will use M = M, to represent group I’s second order
norm as well because norms of group I’s SOFDs dominate
norms of group II’'s SOFDs. For convenience of reference,
in the subsequent discussion we shall simply use the term
“second order norm of an extra-ordinary CCSS patch” to
refer to the “second order norm of group I of an extra-
ordinary CCSS patch”.
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Figure 6: (a) Vicinity of the extra-ordinary point. (b)
Vicinity of the other three vertices of S.

3.1 Matrix based Rate of Convergence

The second order norm of S = S{) can be put in matrix
form as follows:

M = ||AP|
where A is a 2n % (2n + 1) matrix
(2 -1 0 0o 0 -1 0 0 -~ 0 0]
2 0 0 -1 0 o 0 -1 -- 0 0
2 0 0 0 0 -1 0 o -- 0 0
A= 2 0 0 -1 0 0 0 0 -1 0
0 2 —1 0 0 0 0 0 0 -1
0 0 -1 2 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 - 2 -1 ]

and P is a control point vector

P:[V17 V27 V37...

A is called the second order norm matriz for extra-
ordinary CCSS patches. If i levels of Catmull-Clark sub-
division are performed on the control mesh of S = S§
then, following the notation of Section 2, we have an
extra-ordinary subpatch S§ whose second order norm can
be expressed as:

M, = anP

where A is a subdivision matrix of dimension
(2n + 1) * (2n + 1). The function of A is to per-
form a subdivision step on the 2n + 1 control vertices
around (and including) the extra-ordinary point (see

Figure 6(a)). For example, when n = 3, A is of the
following form:
5/12  1/6 1/36 1/6 1/36 1/6 1/36
3/8 3/8 1/16 1/16 0 1/16 1/16
/4 1/4  1/4  1/4 0 0 0
A= | 3/8 1/16 1/16 3/8 1/16 1/16 0
1/4 0 0 1/4 1/4 1/4 0
3/8 1/16 0 1/16 1/16 3/8 1/16
1/4 1/4 0 0 0 1/4 1/4

We are interested in knowing the relationship between
|AP|| and |[AA'P||__. We need the following important
result for AA*. The proof of this result is shown in the
Appendix.

Lemma 7: AA" = AA'ATA, where AT is the pseudo-
inverse matriz of A.

With this lemma, we have

||AA"P||°C B ||AA"A+AP||OC ||AAiA+||m\|AP\|°c
[AP] o IAP] - [IAP]
= [[ANA*]

Use r; to represent ||AAiA+||OO. Then we have the fol-

lowing recurrence formula for r;

ri = ANAT|_ = |AATTATANAT|
< ANTTAT]| L JJAAAT (11)
= rian
where ro = 1. Hence, we have the following lemma

on the convergence rate of second order norm of an
extra-ordinary CCSS patch.

Lemma 8: The second order norm of an extra-

ordinary CCSS patch satisfies the following inquality:

where r; = ||AA1'A+||oo and r; satisfies the recurrence
formula (11).

The recurrence formula (11) shows that r; in (12) can
be replaced with r]. However, experiment data show that,



while the convergence rate changes by a constant ratio in
most of the cases, there is a significant difference between
ro and r1. The value of ry is smaller than r% by a sig-
nificant gap. Hence, if we use r{ for r; in (12), we would
end up with a bigger subdivision depth for a given error
tolerance. A better choice is to use ro to bound r;, as
follows.

3, i=2j
r1 r%, i=25+1

3.2 Distance Evaluation

Following (8) and (9), the distance between the extra-
ordinary CCSS patch S(u,v) and the center face of its
control mesh L(u,v) can be expressed as

1L (w, v) = S(u, )|

< 22202 ||L’5(“k= UE) — L§+1(uk+1avk+1)||
(14)
+ ||L8171(um,1,vm,1) — L (U, vm) ||

+ L (ms 0m) — S5 (s vm) |

where m and b are defined in (5) and (u;,v;) are defined
in (6). By applying Lemma 3, Lemma 4 and (7) on the
first, second and third terms of the right hand side of the
above inequality, respectively, we get

[L(u,v) = S(u,v)|| < ey My + M1+ IM,,

IN

Mo(c Z:ZOZ T+ 2rmo1+ 37m)
where ¢ = 1/ min{n,8}. The last part of the above in-

equality follows from Lemma 8. Consequently, through a
simple algebra, we have

1L (w, v) = S(u, v)]]

J
( Mo[c(lfé-l- 2T1)

- J

+ 22—+ 2] if m=2j

<
M 171"2 1 5
0[0(17_7‘2 + lf'r‘2r1)
J J
+ 7+ 5 if mo=2j+1

It can be easily proved that the maximum occurs at
m = oo. Hence, we have the following lemma.

Lemma 9: The maximum of ||L(u,v) — S(u,v)|| satis-
fies the following inequality
Mg 1+ 1

,U) — , < ———
R e

where 7; = |[|[AA'AT||. and M = M, is the second order
norm of the extra-ordinary patch S(u,v).

3.3 Subdivision Depth Computation

Lemma 9 can also be used to evaluate the distance
between a level-i control mesh and the extra-ordinary
patch S(u,v) for any i > 0. This is because the distance
between a level-i control mesh and the surface patch
S(u,v) is dominated by the distance between the level-i
extra-ordinary subpatch and the corresponding control
mesh which, accoriding to Lemma 9, is

()~ S )| < e 2T
min{n,8} 1 —ry

where M; is the second order norm of S(u,v)’s level-i
control mesh, M;. Hence, if the right side of the above
inequality is smaller than a given error tolerance €, then
the distance between S(u,v) and the level-i control
mesh is smaller than e. Consequently, we have the
following subdivision depth computation theorem for
extra-ordinary CCSS patches.

Theorem 10: Given an extra-ordinary surface patch
S(u,v) and an error tolerance e, if
i =min{2l, 2k + 1}

levels of subdivision are iteratively performed on the con-
trol mesh of S(u,v), where

L= ﬂog%(mif:;%ﬂ ;

k= ﬂog%(minrj{}nﬁ} ii:; %ﬂ
with r; = [|[AA’A*||. and My being the second order
norm of S(u,v), then the distance between S(u,v) and
the level-i control mesh is smaller than e.

4 Examples

The new subdivision depth technique has been inple-
mented in C++ on the Windows platform to compare
its performance with the previous approach. MatLab is
used for both numerical and symbolic computation of r;
in the implementation. Table 1 shows the comparison re-
sults of the previous technique, Theorem 6, with the new
technique, Theorem 10. Two error tolerances 0.01 and
0.001 are considered and the second order norm Mj is as-
sumed to be 2. For each error tolerance, we consider five
different valences: 3, 5, 6, 7 and 8 for the extra-ordinary
vertex. As can be seen from the table, the new technique
has a 30% improvement over the previous technique in
most of the cases. Hence, the new technique indeed im-
proves the previous technique significantly.

To show that the rates of convergence are indeed dif-
ference between ry and ro, their values from several typ-
ical extra-ordinary CCSS patches are included in Table
2. Note that when we compare r; and rs, the value of rq
should be squared first.



Table 1. Comparison between the old technique
and the new technique

e =0.01 e = 0.001
N Old New Old New
Technique | Technique | Technique | Technique

3 14 9 19 12
5 16 11 23 16
6 19 16 27 22
7 23 14 33 22
8 37 27 49 33

Table 2. Values of r; and ry for some

extra-ordinary patches.
N T1 T2
3 | 0.6667 | 0.2917
5 | 0.7200 | 0.4016
6 | 0.8889 | 0.5098
7 | 0.8010 | 0.5121
8 | 1.0078 | 0.5691
5 Conclusions

A new subdivision depth computation technique for
extra-ordinary CCSS patches is presented. Like the
previous technique, the subdivision depth is computed
based on norms of the second order forward differences of
the control points. However, the computation process is
performed on matrix representation of the second order
norm, which gives us a better bound of the convergence
rate and, consequently, a tighter subdivision depth for
a given error tolerance. Test results show that the new
technique improves the previous technique by about 30%
in most of the cases. This is a significant result because
of the exponential nature of the subdivision process. We
are not sure if the new technique can be further improved
though.

6 Appendix A: Proof of Lemma 7

It can be shown that when n is odd, i.e, when n = 2k + 1
for some positivi integer k, ATA is a (2n + 1) x (2n +
1) circulant matrix of the following form (see complete
version of the paper [3] for proof)

2n 1 -1 -1
-1 2n -1 -1
1
ATA=H= . (15)
2n +1
-1 -1 2n 1
-1 -1 -1 2n

When n is an even number of the form n = 4k + 2
where k is a positive integer, AT A has the form [3]

ATA=H+E

(16)

where H is defined in (15) and
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When n = 4k, AT A has the form [3]

ATA=H+E+W+7Z

where H is defined in (15), E is defined in (17),

and
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We prove the lemma for the case n = 2k + 1 first. Let
F be a (2n + 1) % (2n + 1) Fourier transform matrix
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1
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where w = €27/ (27+1) 1t is easy to see from eq.(15) that

1 0 0

0 0 0
F*HF =1-

00 --- 0

where I'is a (2n + 1) * (2n + 1) identity matrix. Hence,
when n = 2k + 1 we have

AN ATA = AAN'H = AAN'FF*HFF*

1 0 --- 0
. 00 --- 0
=ANF(I-| . )™
00 --- 0
10 --- 0
. ) 00 --- 0
= AA* — AAN'F | | N
LO 0 --- OJ
11 1
. 11 1
= AA" — AA* | .
11 1
Note that
11 1
111 1
AN’ =0
11 -1

because the row sum of A is 0 and row sum of A is 1.
Hence, we have AA? = AA’ATA when n = 2k + 1.

We next prove the lemma for n = 4k + 2. Note that in
this case AE = %E and AE = 0. With these results we
have

AA'E = %AE =0.

Hence, ANATA = AN'(H + E) = AA".

Finally, we prove the lemma for n = 4k. Similar to the
previous case, we can prove that AW = %VV, AW =0
and AZ = 3Z;, AZ = 0. Therefore, we have AA'W =
+AW = 0 and AA'Z = AZ = 0. Hence, AN'ATA =
AN (H+EW +7Z) = AA™
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