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tA new subdivision depth 
omputation te
hnique forextra-ordinary Catmull-Clark subdivision surfa
e (CCSS)pat
hes is presented. The new te
hnique improves a pre-vious te
hnique by using a matrix representation of these
ond order norm in the 
omputation pro
ess. This en-ables us to get a more pre
ise estimate of the rate of 
on-vergen
e of the se
ond order norm of an extra-ordinaryCCSS pat
h and, 
onsequently, a more pre
ise subdivi-sion depth for a given error toleran
e.Keywords: subdivision surfa
es, subdivision depth 
om-putation1 Introdu
tionGiven a Catmull-Clark subdivision surfa
e (CCSS) pat
h,subdivision depth 
omputation is the pro
ess of determin-ing how many times the 
ontrol mesh of the CCSS pat
hshould be subdivided so that the distan
e between the re-sulting 
ontrol mesh and the surfa
e pat
h is smaller thana given error toleran
e. Good subdivision depth 
ompu-tation te
hniques are important be
ause they allows us tomeet pre
ision requirement in appli
ations su
h as trim-ming, �nite element mesh generation, boolean operations,and tessellation of a CCSS without ex
essively subdivid-ing its 
ontrol mesh.A good subdivision depth 
omputation te
hnique re-quires pre
ise estimate of the distan
e between the 
on-trol mesh of a CCSS pat
h and its limit surfa
e. Op-timum distan
e evaluation te
hniques for regular CCSSpat
hes are available [4, 11℄. Distan
e evaluation for anextra-ordinary CCSS pat
h is more 
ompli
ated. A �rstattempt in that dire
tion is done in [4℄. The distan
eis evaluated by measuring norms of the �rst order for-ward di�eren
es of the 
ontrol points. Sin
e �rst orderforward di�eren
es 
an not measure the 
urvature of asurfa
e but its dimension, the distan
e 
omputed by thisapproa
h is usually bigger than what it really is for re-gions already 
at enough and, 
onsequently, leads to over-estimated subdivision depth.An improved distan
e evaluation te
hnique for extra-ordinary CCSS pat
hes is presented in [5℄. The distan
e

is evaluated by measuring norms of the se
ond order for-ward di�eren
es (
alled se
ond order norms) of the 
on-trol points of the given extra-ordinary CCSS pat
h. Sin
ese
ond order forward di�eren
es 
an measure both heightand width of a region, the distan
e 
omputed by this ap-proa
h re
e
ts 
urvature of the pat
h and, hen
e, leadsto reasonable subdivision depths for regions already 
atenough. However, it has been observed re
ently that,for extra-ordinary CCSS pat
hes, the 
onvergen
e rateof se
ond order norm 
hanges with the subdivision pro-
ess, espe
ially between the �rst subdivision level and these
ond subdivision level. Therefore, using a �xed 
on-vergen
e rate in the distan
e evaluation pro
ess for allsubdivision levels would over-estimate the distan
e and,
onsequently, over-estimate the subdivision depth as well.In this paper we present an improved subdivision depth
omputation method for extra-ordinary CCSS pat
hes.The new te
hnique uses a matrix representation of themaximum se
ond order norm in the 
omputation pro
essto generate a re
urren
e formula. This re
urren
e for-mula allows the smaller 
onvergen
e rate of the se
ondsubdivision level to be used as a bound in the evaluationof the maximum se
ond order norm and, 
onsequently,leads to a more pre
ise subdivision depth for the givenerror toleran
e.The remaining part of the paper is arranged as follows.A brief review of the ba
kground is given in Se
tion 2. Amatrix based subdivision depth 
omputation te
hniquefor extra-ordinary CCSS pat
hes is presented in se
tion3. Examples showing the new te
hnique improves the oldone are presented in Se
tion 4. Con
luding remarks aregiven in Se
tion 5.2 Problem Formulation and Ba
k-groundGiven the 
ontrol mesh of an extra-ordinary CCSS pat
hand an error toleran
e �, the goal here is to 
ompute aninteger d so that if the 
ontrol mesh is iteratively re�ned(subdivided) d times, then the distan
e between the re-sulting mesh and the surfa
e pat
h is smaller than �. dis 
alled the subdivision depth of the surfa
e pat
h with1



respe
t to �. Before we show the new 
omputation te
h-nique, we need to de�ne related terms and review theprevious, se
ond order norm based distan
e evaluationand subdivision depth 
omputation te
hniques for extra-ordinary CCSS pat
hes [5℄. Some of these te
hniques areneeded in the new te
hnique to be presented in Se
tion 3.2.1 Catmull-Clark Subdivision Surfa
esGiven a 
ontrol mesh, by iteratively applying theCatmull-Clark subdivision s
heme [2℄ to re�ne (subdivide)the 
ontrol mesh, we get a sequen
e of re�ned 
ontrolmeshes. The limit surfa
e of the re�ned 
ontrol meshes is
alled a Catmull-Clark subdivision surfa
e (CCSS). There�ning pro
ess 
onsists of de�ning new verti
es (fa
epoints, edge points and vertex points) and 
onne
ting thenew verti
es to form new edges and fa
es of a new 
on-trol mesh. The 
ontrol mesh of a CCSS pat
h and thenew 
ontrol mesh after a re�ning (subdivision) pro
essare shown in Figures 1(a) and 1(b), respe
tively. This isa 
on
eptual drawing, the lo
ation shown for a new vertexmight not be its exa
t physi
al lo
ation.
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Figure 1: (a) Control mesh of an extra-ordinary pat
h; (b)new verti
es and edges generated after a Catmull-Clarksubdivision.The limit surfa
e of the iteratively re�ned 
ontrolmeshes is 
alled a subdivision surfa
e be
ause the meshre�ning pro
ess is a generalization of the uniform bi
ubi
B-spline surfa
e subdivision te
hnique. Therefore, CCSSsin
lude uniform B-spline surfa
es and pie
ewise B�eziersurfa
es as spe
ial 
ases. A
tually CCSSs in
lude non-uniform B-spline surfa
es and NURBS surfa
es as spe
ial
ases as well [13℄. The Catmull-Clark mesh re�ning pro-
ess sometime will also be 
alled a Catmull-Clark subdi-vision, or simply a subdivision step. The given 
ontrolmesh will be referred to as M0 and the limit surfa
e willbe referred to as �S. For ea
h positive integer k,Mk refersto the 
ontrol mesh obtained after applying the Catmull-Clark subdivision k times to M0.2.2 Regular vs. Extra-ordinaryThe power of CCSSs 
omes from the way mesh verti
esare 
onne
ted. If the number of edges in
ident to a mesh

vertex is 
alled its valen
e, then the valen
e of an inte-rior mesh vertex 
an be anything � 3, instead of just four.Those mesh verti
es whose valen
es are di�erent from fourare 
alled extra-ordinary verti
es to distinguish them fromthe standard or regular mesh verti
es. Vertex V in Fig-ure 1(a) is an extra-ordinary vertex of valen
e �ve. Aninterior mesh fa
e is 
alled an extra-ordinary mesh fa
eif it has an extra-ordinary vertex. Otherwise, a standardor regular mesh fa
e. Mesh fa
e F in Figure 1(a) is anextra-ordinary mesh fa
e. Note that after one iterationof the subdivision step, mesh fa
es of a CCSS are alwaysquadrilaterals and the number of extra-ordinary verti
esremains the same. After at most two iterations of thesubdivision step, ea
h mesh fa
e has at most one extra-ordinary vertex. Therefore, without loss of generality, weshall assume all the mesh fa
es in M0 are quadrilateralsand ea
h mesh fa
e ofM0 has at most one extra-ordinaryvertex.For ea
h interior fa
e F of Mk, k � 0, there is a
orresponding pat
h S in the limit surfa
e �S. F andS 
an be parametrized on the same parameter spa
e
 = [0; 1℄ � [0; 1℄ [14℄. F is a bilinear rule surfa
e.S is a uniform bi
ubi
 B-spline surfa
e pat
h if F is aregular fa
e. If F is an extra-ordinary fa
e then S, de-�ned by 2n + 8 
ontrol points where n is the valen
e ofF's extra-ordinary vertex, 
an not be parametrized as auniform B-spline pat
h. In su
h a 
ase, S is 
alled anextra-ordinary surfa
e pat
h. Otherwise, a regular surfa
epat
h or standard surfa
e pat
h. The 
ontrol mesh shownin Figure 1(a) is the 
ontrol mesh of an extra-ordinarysurfa
e pat
h whose extra-ordinary vertex is of valen
e�ve.2.3 Distan
e and Subdivision DepthFor a given interior mesh fa
e F, let S be the 
orrespond-ing pat
h in the limit surfa
e �S. The 
ontrol mesh of S
ontains F as the 
enter fa
e. If we perform a subdivisionstep on the 
ontrol mesh, we get four new mesh fa
es inthe pla
e of F. This is the 
ase no matter F is a regularfa
e or an extra-ordinary fa
e. See Figure 1(b) for thefour new fa
es F00, F10, F01 and F11 in the pla
e of theextra-ordinary fa
e F shown in Figure 1(a). Sin
e ea
hof these new fa
es 
orresponds to a quarter subpat
h ofS, we shall 
all these new fa
es subfa
es of F even thoughthey are not pyhsi
ally subsets of F. Therefore, ea
h sub-division step generates four new subfa
es for the 
enterfa
e F of the 
ontrol mesh. Be
ause the 
orresponden
ebetween F and S is one-to-one, sometime, instead of say-ing performing a subdivision step on S, we simply sayperforming a subdivision step on F.The distan
e between an interior mesh fa
e F and the
orresponding pat
h S is de�ned as the maximum ofkF(u; v)� S(u; v)k:DF = max (u;v)2
 kF(u; v)� S(u; v)k (1)2



where 
 is the unit square parameter spa
e of F and S.DF is also 
alled the distan
e between S and its 
ontrolmesh. For a given � > 0, the subdivision depth of F withrespe
t to � is a positive integer d su
h that if F is re
ur-sively subdivided d times, the distan
e between ea
h ofthe resulting subfa
es and the 
orresponding subpat
h issmaller than �.2.4 Distan
e Evaluation for a RegularPat
h
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Figure 2: De�nition of L(u; v) = (1�v)L1(u)+vL2(u) =(1� u)�L1(v) + u�L2(v).Let S(u; v) be a uniform bi
ubi
 B-spline surfa
e pat
hde�ned on the unit square 
 = [0; 1℄ � [0; 1℄ with 
on-trol points Vi;j , 0 � i; j � 3, and let L(u; v) bethe bilinear parametrization of the 
enter mesh fa
efV1;1;V2;1;V2;2;V1;2g (see Figure 2):L(u; v) = (1� v)[(1� u)V1;1 + uV2;1℄+v[(1� u)V1;2 + uV2;2℄; 0 � u; v � 1:The distan
e between S(u; v) and L(u; v) satis�es thefollowing relationship [4℄.Lemma 1: The distan
e between L(u; v) and S(u; v)satis�es the following inequalitymax0�u;v�1 kL(u; v)� S(u; v)k � 13Mwhere M is the se
ond order norm of S(u; v) de�ned asfollowsM = maxi;jf k2Vi;j �Vi�1;j �Vi+1;jk ;k2Vi;j �Vi;j�1 �Vi;j+1k g (2)2.5 Subdivision Depth Computation forExtra-Ordinary Pat
hesThe distan
e evaluation me
hanism of the previous sub-division depth 
omputation te
hnique for extra-ordinaryCCSS pat
hes utilizes se
ond order norm as a measure-ment s
heme as well [5℄, but the pattern of se
ond order

forward di�eren
es (SOFDs) used in the distan
e evalua-tion pro
ess is di�erent from (2). We review the de�nitionof SOFD pattern used for an extra-ordinary pat
h anda re
urren
e formula for the 
orresponding se
ond ordernorm �rst.2.5.1 Se
ond Order Norm and Re
urren
e For-mula
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Figure 3: (a) Ordering of 
ontrol points of an extra-ordinary pat
h. (b) Ordering of new 
ontrol points (soliddots) after a Catmull-Clark subdivision.Let Vi, i = 1; 2; :::; 2n+ 8, be the 
ontrol points of anextra-ordinary pat
h S(u; v) = S00(u; v), with V1 beingan extra-ordinary vertex of valen
e n. The 
ontrol pointsare ordered following J. Stam's fashion [14℄ (Figure 3(a)).The 
ontrol mesh of S(u; v) is denoted � = �00. These
ond order norm of S, denoted M = M0, is de�ned asthe maximum norm of the following 2n+ 10 SOFDs:M = maxff k2V1 �V2i �V2((i+1)%n+1)k j 1 � i � ng[ f k2V2(i%n+1) �V2i+1 �V2(i%n+1)+1k j 1 � i � ng[ f k 2V3 �V2 �V2n+8 k; k 2V4 �V1 �V2n+7 k;k 2V5 �V6 �V2n+6 k; k 2V5 �V4 �V2n+3 k;k 2V6 �V1 �V2n+4 k; k 2V7 �V8 �V2n+5 k;k 2V2n+7 �V2n+6 �V2n+8 k;k 2V2n+6 �V2n+2 �V2n+7 k;k 2V2n+3 �V2n+2 �V2n+4 k;k 2V2n+4 �V2n+3 �V2n+5 k g g
(3)

By performing a subdividion step on �, one gets2n + 17 new verti
es V1i , i = 1; :::; 2n + 17 (see Figure3(b)). These 
ontrol points form four 
ontrol point sets�10, �11, �12 and �13, representing 
ontrol meshes of thesubpat
hes S10, S11, S12 and S13, respe
tively (see Figure3(b)) where �10 = fV1i j 1 � i � 2n+ 8 g, and the otherthree 
ontrol point sets �11, �12 and �13 are shown inFigure 4. S10 is an extra-ordinary pat
h but S11, S12 and S13are regular pat
hes. Therefore, se
ond order norm similarto the one de�ned in (2) 
an be de�ned for S11, S12 and S13,while a se
ond order norm similar to (3) 
an be de�nedfor the 
ontrol mesh of S10. We use M1 to denote the3
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Figure 4: Control verti
es of subpat
hes S11, S12 and S13.se
ond order norm of S10. This pro
ess 
an be iterativelyrepeated on S10, S20, S30, ... et
. We have the followinglemma for a general Sk0 and its se
ond order normMk [5℄.Lemma 2: For any k � 0, if Mk represents the se
ondorder norm of the extra-ordinary sub-pat
h Sk0 after kCatmull-Clark subdivision steps, then Mk satis�es thefollowing inequalityMk+1 � 8>><>>: 23Mk; n = 31825Mk; n = 5( 34 + 8n�464n2 )Mk; n > 5 :A
tually, the lemma works in a more general sense, i.e.,ifMk stands for the se
ond order norm of the 
ontrol meshMk, instead of �k0 , the lemma still works. The se
ondorder norm of Mk is de�ned as follows: for regions notinvolving the extra-ordinary point, use standard SOFDs;for the vi
inity of the extra-ordinary point, use SOFDsde�ned in (3). The proof is essentially the same.2.5.2 Distan
e EvaluationTo 
ompute the distan
e between the extra-ordinarypat
h S(u; v) and the 
enter fa
e of its 
ontrol mesh,F = fV1;V6;V5;V4g, we need to parameterize the pat
hS(u; v) �rst.
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-partition of the unit square.By iteratively performing Catmull-Clark subdivision onS(u; v) = S00, S10, S20, ... et
, we get a sequen
e of reg-ular pat
hes f Smb g, m � 1, b = 1; 2; 3, and a sequen
e

of extra-ordinary pat
hes f Sm0 g, m � 1. The extra-ordinary pat
hes 
onverge to a limit point whi
h is thevalue of S at (0; 0) [8℄. This limit point and the regu-lar pat
hes f Smb g, m � 1, b = 1; 2; 3, form a parti-tion of S. If we use 
mb to represent the region of theparameter spa
e that 
orresponds to Smb then f 
mb g,m � 1, b = 1; 2; 3, form a partition of the unit square
 = [0; 1℄� [0; 1℄ (see Figure 5) with
m1 = [ 12m ; 12m�1 ℄� [0; 12m ℄;
m2 = [ 12m ; 12m�1 ℄� [ 12m ; 12m�1 ℄;
m3 = [0; 12m ℄� [ 12m ; 12m�1 ℄: (4)The parametrization of S(u; v) is done as follows. Forany (u; v) 2 
 but (u; v) 6= (0; 0), �rst �nd the 
mb that
ontains (u; v). m and b 
an be 
omputed as follows.m(u; v) = minfdlog 12ue; dlog 12 vegb(u; v) = 8<: 1; if 2mu � 1 and 2mv � 12; if 2mu � 1 and 2mv � 13; if 2mu � 1 and 2mv � 1 (5)Then map this 
mb to the unit square with the followingmapping (u; v)! (um; vm)wheretm = (2mt)%1 = � 2mt; if 2mt � 12mt� 1; if 2mt > 1 (6)The value of S(u; v) is equal to the value of Smb at(um; vm), i.e., S(u; v) = Smb (um; vm):Let Lmb (u; v) be the bilinear parametrization of the 
enterfa
e of Smb 's 
ontrol mesh. Sin
e Smb is a regular pat
h,following Lemma 1, we havekLmb (u; v)� Smb (u; v)k � 13Mmbwhere Mmb is the se
ond order norm of the 
ontol meshof Smb . The se
ond order norm of Smb is smaller thanthe se
ond order norm of Mm, Mm. Hen
e, the aboveinequality 
an be written askLmb (u; v)� Smb (u; v)k � 13Mm: (7)If we use L(u; v) to represent the bilinear parametriza-tion of the 
enter fa
e of S(u; v)'s 
ontrol mesh F =fV1;V6;V5;V4gL(u; v) = (1� v)[(1� u)V1 + uV6℄+v[(1� u)V4 + uV5℄; 0 � u; v � 14



then the maximum distan
e between S(u; v) and its 
on-trol mesh 
an be written ask L(u; v) � S(u; v) k� k L(u; v)� Lmb (um; vm)k+ kLmb (um; vm)� S(u; v) k (8)where 0 � u; v � 1 and um and vm are de�ned in (6).The se
ond term on the right hand side of the inequality
an be evaluated using (7). Hen
e, one only needs towork with the �rst term on the right hand side of theinequality.It is easy to see that if (u; v) 2 
mb then (u; v) 2 
k0 forany 0 � k < m where
k0 = [0; 12k ℄� [0; 12k ℄:
k0 
orresponds to the subpat
h Sk0 . This means that(2ku; 2kv) is within the parameter spa
e of Sk0 for 0 �k < m, i.e., (2ku; 2kv) = (uk; vk) where uk and vk arede�ned in (6). Consequently, we 
an 
onsider Lk0(uk; vk)for 0 � k < m where Lk0 is the bilinear parametrizationof the 
enter fa
e of the 
ontrol mesh of Sk0 (with theunderstanding that L00 = L and (u0; v0) = (u; v)). Hen
e,the �rst term on the right hand side of (8) 
an be writtenas kL(u; v)� Lmb (um; vm)k�Pm�2k=0 kLk0(uk; vk)� Lk+10 (uk+1; vk+1)k+ kLm�10 (um�1; vm�1)� Lmb (um; vm)k: (9)The following two lemmas are needed in the evaluationof the right side of the above inequality.Lemma 3: If (u; v) 2 
mb where b and m are de�nedin (5) then for any 0 � k < m� 1 we havek Lk0(uk; vk)� Lk+10 (uk+1; vk+1) k � 1minf n; 8 gMkwhere Mk is the se
ond order norm of Mk and L00 = L.Lemma 4: If (u; v) 2 
mb where b and m are de�nedin (5) then we havek Lm�10 (um�1; vm�1)� Lmb (um; vm) k� ( 14Mm�1; if b = 218Mm�1; if b = 1 or 3where Mm�1 is the se
ond order norm of Mm�1.By applying Lemmas 3 and 4 on (9) and then using(7) on (8), we have the following lemma on the distan
ebetween an extra-ordinary CCSS pat
h S(u; v) and its
ontrol mesh L(u; v) [5℄.

Lemma 5: The maximum of k L(u; v) � S(u; v) ksatis�es the following inequalitykL(u; v)�S(u; v) k � 8>>>>>><>>>>>>: M0; n = 357M0; n = 54nn2�8n+46M0; 5 < n � 8n24(n2�8n+46)M0; n > 8 (10)where M = M0 is the se
ond order norm of the extra-ordinary pat
h S(u; v).2.5.3 Subdivision Depth ComputationLemma 5 
an be used to estimate the distan
e between alevel-k 
ontrol mesh and the surfa
e pat
h for any k > 0.This is be
ause the distan
e between a level-k 
ontrolmesh and the surfa
e pat
h is dominated by the distan
ebetween the level-k extra-ordinary subpat
h and the 
or-responding 
ontrol mesh whi
h, a

oriding to Lemma 5,iskLk(u; v)�S(u; v) k �8>>><>>>: Mk; n = 31825Mk; 5 � n � 8n24(n2�8n+46)Mk; n > 8where Mk is the se
ond order norm of S(u; v)'s level-k
ontrol mesh Mk. The previous subdivision depth 
om-putation te
hnique for extra-ordinary surfa
e pat
hes isobtained by 
ombining the above result with Lemma 2 [5℄.Theorem 6: Given an extra-ordinary surfa
e pat
hS(u; v) and an error toleran
e �, if k levels of subdivisionsare iteratively performed on the 
ontrol mesh of S(u; v),where k = �logwMz� �with M being the se
ond order norm of S(u; v) de�ned in(3), w =8>>><>>>: 32 ; n = 32518 ; n = 54n23n2+8n�46 ; n > 5and z =8>>><>>>: 1; n = 32518 ; 5 � n � 82(n2�8n+46)n2 ; n > 8then the distan
e between S(u; v) and the level-k 
ontrolmesh is smaller than �.5



3 New Subdivision Depth Com-putation Te
hnique for Extra-Ordinary Pat
hesThe SOFDs involved in the se
ond order norm of anextra-ordinary CCSS pat
h (see eq. (3)) 
an be 
lassi�edinto two groups: group I and group II. Group I 
ontainsthose SOFDs that involve verti
es in the vi
inity of theextra-ordinary vertex (see Figure 6(a)). These are the�rst 2n SOFDs in (3). Group II 
ontains the remainingSOFDs, i.e., SOFDs that involve verti
es in the vi
inityof the other three verti
es of S (see Figure 6(b)). Theseare the last 10 SOFDs in (3). It is easy to see that the
onvergen
e rate of the SOFDs in group II is the same asthe regular 
ase, i.e., 1=4 [4℄. Therefore, to study proper-ties of the se
ond order norm M , it is suÆ
ient to studynorms of the SOFDs in group I. The maximum of thesenorms will be 
alled the se
ond order norm of group I.We will use M = M0 to represent group I's se
ond ordernorm as well be
ause norms of group I's SOFDs dominatenorms of group II's SOFDs. For 
onvenien
e of referen
e,in the subsequent dis
ussion we shall simply use the term\se
ond order norm of an extra-ordinary CCSS pat
h" torefer to the \se
ond order norm of group I of an extra-ordinary CCSS pat
h".
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Figure 6: (a) Vi
inity of the extra-ordinary point. (b)Vi
inity of the other three verti
es of S.3.1 Matrix based Rate of Convergen
eThe se
ond order norm of S = S00 
an be put in matrixform as follows: M = kAPk1where A is a 2n � (2n+ 1) matrixA = 2666666666664
2 �1 0 0 0 �1 0 0 � � � 0 02 0 0 �1 0 0 0 �1 � � � 0 02 0 0 0 0 �1 0 0 � � � 0 0...2 0 0 �1 0 0 0 0 � � � �1 00 2 �1 0 0 0 0 0 � � � 0 �10 0 �1 2 �1 0 0 0 � � � 0 0...0 0 0 0 0 0 0 0 � � � 2 �1

3777777777775and P is a 
ontrol point ve
torP = [V1; V2; V3; : : : ; V2n+1℄T :

A is 
alled the se
ond order norm matrix for extra-ordinary CCSS pat
hes. If i levels of Catmull-Clark sub-division are performed on the 
ontrol mesh of S = S00then, following the notation of Se
tion 2, we have anextra-ordinary subpat
h Si0 whose se
ond order norm 
anbe expressed as: Mi = 

A�iP

1where � is a subdivision matrix of dimension(2n + 1) � (2n + 1). The fun
tion of � is to per-form a subdivision step on the 2n + 1 
ontrol verti
esaround (and in
luding) the extra-ordinary point (seeFigure 6(a)). For example, when n = 3, � is of thefollowing form:� = 2666664 5=12 1=6 1=36 1=6 1=36 1=6 1=363=8 3=8 1=16 1=16 0 1=16 1=161=4 1=4 1=4 1=4 0 0 03=8 1=16 1=16 3=8 1=16 1=16 01=4 0 0 1=4 1=4 1=4 03=8 1=16 0 1=16 1=16 3=8 1=161=4 1=4 0 0 0 1=4 1=4
3777775 :We are interested in knowing the relationship betweenkAPk1 and 

A�iP

1. We need the following importantresult for A�i. The proof of this result is shown in theAppendix.Lemma 7: A�i = A�iA+A, where A+ is the pseudo-inverse matrix of A.With this lemma, we havekA�iPk1kAPk1 = kA�iA+APk1kAPk1 � kA�iA+k1kAPk1kAPk1= 

A�iA+

1Use ri to represent 

A�iA+

1. Then we have the fol-lowing re
urren
e formula for riri � 

A�iA+

1 = 

A�i�1A+A�A+

1� 

A�i�1A+

1 kA�A+k1= ri�1 r1 (11)where r0 = 1. Hen
e, we have the following lemmaon the 
onvergen
e rate of se
ond order norm of anextra-ordinary CCSS pat
h.Lemma 8: The se
ond order norm of an extra-ordinary CCSS pat
h satis�es the following inquality:Mi � ri M0 (12)where ri = 

A�iA+

1 and ri satis�es the re
urren
eformula (11).The re
urren
e formula (11) shows that ri in (12) 
anbe repla
ed with ri1. However, experiment data show that,6



while the 
onvergen
e rate 
hanges by a 
onstant ratio inmost of the 
ases, there is a signi�
ant di�eren
e betweenr2 and r1. The value of r2 is smaller than r21 by a sig-ni�
ant gap. Hen
e, if we use ri1 for ri in (12), we wouldend up with a bigger subdivision depth for a given errortoleran
e. A better 
hoi
e is to use r2 to bound ri, asfollows. ri � 8<: rj2; i = 2jr1rj2; i = 2j + 1 (13)3.2 Distan
e EvaluationFollowing (8) and (9), the distan
e between the extra-ordinary CCSS pat
h S(u; v) and the 
enter fa
e of its
ontrol mesh L(u; v) 
an be expressed askL(u; v)� S(u; v)k�Pm�2k=0 kLk0(uk; vk)� Lk+10 (uk+1; vk+1)k+ kLm�10 (um�1; vm�1)� Lmb (um; vm)k+ kLmb (um; vm)� Smb (um; vm)k (14)where m and b are de�ned in (5) and (ui; vi) are de�nedin (6). By applying Lemma 3, Lemma 4 and (7) on the�rst, se
ond and third terms of the right hand side of theabove inequality, respe
tively, we getkL(u; v) � S(u; v)k � 
Pm�2k=0 Mk + 14Mm�1 + 13Mm� M0(
Pm�2k=0 rk + 14 rm�1 + 13 rm)where 
 = 1=minfn; 8g. The last part of the above in-equality follows from Lemma 8. Consequently, through asimple algebra, we havekL(u; v)� S(u; v)k�8>>>>>>><>>>>>>>: M0[
( 1�rj21�r2 + 1�rj�121�r2 r1)+ r1rj�124 + rj23 ℄; if m = 2jM0[
( 1�rj21�r2 + 1�rj21�r2 r1)+ rj24 + r1rj23 ℄; if m = 2j + 1It 
an be easily proved that the maximum o

urs atm =1. Hen
e, we have the following lemma.Lemma 9: The maximum of kL(u; v)�S(u; v)k satis-�es the following inequalitykL(u; v)� S(u; v)k � M0minfn; 8g 1 + r11� r2where ri = kA�iA+k1 and M = M0 is the se
ond ordernorm of the extra-ordinary pat
h S(u; v).

3.3 Subdivision Depth ComputationLemma 9 
an also be used to evaluate the distan
ebetween a level-i 
ontrol mesh and the extra-ordinarypat
h S(u; v) for any i > 0. This is be
ause the distan
ebetween a level-i 
ontrol mesh and the surfa
e pat
hS(u; v) is dominated by the distan
e between the level-iextra-ordinary subpat
h and the 
orresponding 
ontrolmesh whi
h, a

oriding to Lemma 9, iskLi(u; v)� S(u; v)k � Miminfn; 8g 1 + r11� r2where Mi is the se
ond order norm of S(u; v)'s level-i
ontrol mesh, Mi. Hen
e, if the right side of the aboveinequality is smaller than a given error toleran
e �, thenthe distan
e between S(u; v) and the level-i 
ontrolmesh is smaller than �. Consequently, we have thefollowing subdivision depth 
omputation theorem forextra-ordinary CCSS pat
hes.Theorem 10: Given an extra-ordinary surfa
e pat
hS(u; v) and an error toleran
e �, ifi � minf2l; 2k + 1glevels of subdivision are iteratively performed on the 
on-trol mesh of S(u; v), wherel = dlog 1r2 ( 1minfn;8g 1+r11�r2 M0� )e ;k = dlog 1r2 ( r1minfn;8g 1+r11�r2 M0� )ewith ri = kA�iA+k1 and M0 being the se
ond ordernorm of S(u; v), then the distan
e between S(u; v) andthe level-i 
ontrol mesh is smaller than �.4 ExamplesThe new subdivision depth te
hnique has been inple-mented in C++ on the Windows platform to 
ompareits performan
e with the previous approa
h. MatLab isused for both numeri
al and symboli
 
omputation of riin the implementation. Table 1 shows the 
omparison re-sults of the previous te
hnique, Theorem 6, with the newte
hnique, Theorem 10. Two error toleran
es 0:01 and0:001 are 
onsidered and the se
ond order norm M0 is as-sumed to be 2. For ea
h error toleran
e, we 
onsider �vedi�erent valen
es: 3, 5, 6, 7 and 8 for the extra-ordinaryvertex. As 
an be seen from the table, the new te
hniquehas a 30% improvement over the previous te
hnique inmost of the 
ases. Hen
e, the new te
hnique indeed im-proves the previous te
hnique signi�
antly.To show that the rates of 
onvergen
e are indeed dif-feren
e between r1 and r2, their values from several typ-i
al extra-ordinary CCSS pat
hes are in
luded in Table2. Note that when we 
ompare r1 and r2, the value of r1should be squared �rst.7



Table 1. Comparison between the old te
hniqueand the new te
hnique� = 0:01 � = 0:001N Old New Old NewTe
hnique Te
hnique Te
hnique Te
hnique3 14 9 19 125 16 11 23 166 19 16 27 227 23 14 33 228 37 27 49 33Table 2. Values of r1 and r2 for someextra-ordinary pat
hes.N r1 r23 0.6667 0.29175 0.7200 0.40166 0.8889 0.50987 0.8010 0.51218 1.0078 0.56915 Con
lusionsA new subdivision depth 
omputation te
hnique forextra-ordinary CCSS pat
hes is presented. Like theprevious te
hnique, the subdivision depth is 
omputedbased on norms of the se
ond order forward di�eren
es ofthe 
ontrol points. However, the 
omputation pro
ess isperformed on matrix representation of the se
ond ordernorm, whi
h gives us a better bound of the 
onvergen
erate and, 
onsequently, a tighter subdivision depth fora given error toleran
e. Test results show that the newte
hnique improves the previous te
hnique by about 30%in most of the 
ases. This is a signi�
ant result be
auseof the exponential nature of the subdivision pro
ess. Weare not sure if the new te
hnique 
an be further improvedthough.6 Appendix A: Proof of Lemma 7It 
an be shown that when n is odd, i.e, when n = 2k+1for some positivi integer k, A+A is a (2n + 1) � (2n +1) 
ir
ulant matrix of the following form (see 
ompleteversion of the paper [3℄ for proof)A+A = H � 12n+ 1 2666664 2n �1 � � � �1 �1�1 2n � � � �1 �1...�1 �1 � � � 2n �1�1 �1 � � � �1 2n
3777775 : (15)When n is an even number of the form n = 4k + 2where k is a positive integer, A+A has the form [3℄A+A = H+E (16)

where H is de�ned in (15) and
E = 1n

26666666666666664
0 0 0 0 0 0 � � � 00 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �10 0 0 0 0 0 � � � 0... ...0 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �1

37777777777777775 : (17)
When n = 4k, A+A has the form [3℄A+A = H+E+W+Z (18)where H is de�ned in (15), E is de�ned in (17),

W = 23n
266666666666666666664

0 0 0 0 0 � � � 00 �1 0 0 0 � � � 00 �1 0 �1 0 � � � 00 0 0 �1 0 � � � 00 1 0 �1 0 � � � 00 1 0 0 0 � � � 00 1 0 1 0 � � � 00 0 0 1 0 � � � 00 �1 0 1 0 � � � 0... ...0 0 0 1 0 � � � 00 �1 0 1 0 � � � 0
377777777777777777775 ;and

Z = 23n
266666666666666666664

0 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 �2 0 0 0 � � � 00 0 �1 0 �1 0 � � � �10 0 0 0 �2 0 � � � �20 0 1 0 �1 0 � � � �10 0 2 0 0 0 � � � 00 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2... ...0 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2
377777777777777777775 :We prove the lemma for the 
ase n = 2k + 1 �rst. LetF be a (2n+ 1) � (2n+ 1) Fourier transform matrixF = 1p2n+ 1 2666664 1 1 1 � � � 1 11 ! !2 � � � !2n�1 !2n1 !2 !4 � � � !4n�2 !4n... ... ...1 !2n !4n � � � !4n2�2n !4n2

37777758



where ! = e2�i=(2n+1). It is easy to see from eq.(15) thatF�HF = I� 26664 1 0 � � � 00 0 � � � 0... ... ...0 0 � � � 0 37775where I is a (2n + 1) � (2n + 1) identity matrix. Hen
e,when n = 2k + 1 we haveA�iA+A = A�iH = A�iFF�HFF�= A�iF(I� 26664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 37775)F�= A�i �A�iF26664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 37775F�= A�i �A�i 26664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 37775 :Note that A�i 26664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 37775 = 0be
ause the row sum of A is 0 and row sum of � is 1.Hen
e, we have A�i = A�iA+A when n = 2k + 1.We next prove the lemma for n = 4k+2. Note that inthis 
ase �E = 14E and AE = 0. With these results wehave A�iE = 14iAE = 0:Hen
e, A�iA+A = A�i(H + E) = A�i.Finally, we prove the lemma for n = 4k. Similar to theprevious 
ase, we 
an prove that �W = 12W, AW = 0and �Z = 12Z1, AZ = 0. Therefore, we have A�iW =12iAW = 0 and A�iZ = 12iAZ = 0. Hen
e, A�iA+A =A�i(H + EW+ Z) = A�i.Referen
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