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Abstract
A new subdivision depth computation technique for extra-ordinary Catmull-Clark subdivision sur-
face (CCSS) patches is presented. The new technique improves a previous technique by using a matrix
representation of the second order norm in the computation process. This enables us to get a more
precise estimate of the rate of convergence of the second order norm of an extra-ordinary CCSS patch
and, consequently, a more precise subdivision depth for a given error tolerance.
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1 Introduction

Given a Catmull-Clark subdivision surface (CCSS) patch, subdivision depth computation is the process
of determining how many times the control mesh of the CCSS patch should be subdivided so that the
distance between the resulting control mesh and the surface patch is smaller than a given error tolerance.
Good subdivision depth computation techniques are important because they allows us to meet precision
requirement in applications such as trimming, finite element mesh generation, boolean operations, and
tessellation of a CCSS without excessively subdividing its control mesh.

A good subdivision depth computation technique requires precise estimate of the distance between the
control mesh and the limit surface. Optimum distance evaluation techniques for regular CCSS patches
are available [4, 11]. Distance evaluation for an extra-ordinary CCSS patch is more complicated. A first
attempt in that direction is done in [4]. The distance is evaluated by measuring norms of the first order
forward differences of the control points. Since first order forward differences can not measure the curvature
of a surface but its dimension, the distance computed by this approach is usually bigger than what it really
is for regions already flat enough and, consequently, leads to over-estimated subdivision depth.

An improved distance evaluation technique for extra-ordinary CCSS patches is presented in [5]. The
distance is evaluated by measuring norms of the second order forward differences (called second order
norms) of the control points of the given extra-ordinary CCSS patch. Since second order forward differences
can measure both height and width of a region, the distance computed by this approach reflects curvature
of the patch and, hence, leads to reasonable subdivision depths for regions already flat enough. However,
it has been observed recently that, for extra-ordinary CCSS patches, the convergence rate of second order
norm changes with the subdivision process, especially between the first subdivision level and the second
subdivision level. Therefore, using a fixed convergence rate in the distance evaluation process for all
subdivision levels would over-estimate the distance and, consequently, over-estimate the subdivision depth
as well.

In this paper we present an improved subdivision depth computation method for extra-ordinary CCSS
patches. The new technique uses a matrix representation of the maximum second order norm in the com-
putation process to generate a recurrence formula. This recurrence formula allows the smaller convergence



rate of the second subdivision level to be used as a bound in the evaluation of the maximum second order
norm and, consequently, leads to a more precise subdivision depth for the given error tolerance.

The remaining part of the paper is arranged as follows. A brief review of the background is given in
Section 2. A matrix based subdivision depth computation technique for extra-ordinary CCSS patches is
presented in section 3. Examples showing the new technique improves the old one are presented in Section
4. Concluding remarks are given in Section 5.

2 Problem Formulation and Background

Given a control mesh M = My, let S be its Catmull-Clark subdivision surface (CCSS). For each interior
face F of M, there is a corresponding patch S in the limit surface S. The control mesh of S contains F as
the center face. If we perform a Catmull-Clark subdivision step on the control mesh, we get four new mesh
faces in the place of F. This is the case no matter F is a regular face or an extra-ordinary face. See Figure
1(b) for the four new faces F(g, F19, Fp1 and Fy; in the place of the extra-ordinary face F shown in Figure
1(a). Since each of these new faces corresponds to a quarter subpatch of S, we shall call these new faces
subfaces of F even though they are not pyhsically subsets of F. Therefore, each subdivision step generates
four new subfaces for the center face F of the control mesh. Because the correspondence between F and S
is one-to-one, sometime, instead of saying performing a subdivision step on S, we simply say performing a
subdivision step on F.
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Figure 1: (a) Control mesh of an extra-ordinary patch; (b) new vertices and edges generated after a
Catmull-Clark subdivision.

The distance between an interior mesh face F and the corresponding patch S is defined as the maximum
of [L(u,v) — S(u,v)||:

Dy = mag (y vyen [ L, v) — S(u, )| (1)

where Q is the unit square parameter space of S and L(u,v) is the bilinear parametrization of F on Q.
Dr is also called the distance between S and its control mesh. For a given € > 0, the subdivision depth
of F with respect to € is a positive integer d such that if F is recursively subdivided d times, the distance
between each of the resulting subfaces and the corresponding subpatch is smaller than €. In the following,
we review some of the previous results needed in the new work.



2.1 Distance Evaluation for a Regular Patch

Figure 2: Definition of L(u,v) = (1 — v)Ly(u) + vLa(u) = (1 — u)Lq (v) + uLa(v).

Let S(u,v) be a uniform bicubic B-spline surface patch defined on the unit square = [0, 1] x [0, 1]
with control points V;;, 0 < i,j < 3, and let L(u,v) be the bilinear parametrization of the center mesh
face {V11, Va1, Va2, Via} (see Figure 2):

L(u,v) = (1 —v)[(1 —u)Vi1+uVai] +0[(1 —u)Vig+uVys], 0<wu,v<1.

Then the distance between S(u,v) and L(u,v) satisfies the following lemma [4].
Lemma 1: The distance between L(u,v) and S(u, v) satisfies the following inequality

1
_ < Z
ofax [[L(u,v) = S(u,v)| < s M

where M is the second order norm of S(u,v) defined as follows

M= nzl,%;X{ 12Vi; — Vi1 — Viggll, [12Vij — Vi1 — Vil } (2)

2.2 Subdivision Depth Computation for Extra-Ordinary Patches

The distance evaluation mechanism of the previous subdivision depth computation technique for extra-
ordinary CCSS patches utilizes second order norm as a measurement scheme as well [5], but the pattern
of second order forward differences (SOFDs) used in the distance evaluation process is different from (2).

Let V;, i = 1,2,...,2n + 8, be the control points of an extra-ordinary patch S(u,v) = S8(u,v), with
V1 being an extra-ordinary vertex of valence n. The control points are ordered following J. Stam’s fashion

[14] (Figure 3(a)). The control mesh of S(u,v) is denoted II = II}. The second order norm of S, denoted
= My, is defined as the maximum norm of the following SOFDs. There are 2n + 10 of them.

M =maz{ { |2V1 — Vai = Voiynygnenll [ 1 < i <n} U { [12Vaignt1) — Vaitr = Vognin il | 1 <i <n}
U {[[2Vs— Va2 —Vouis ||, [| 2Va = Vi = Voui7 ||, [| 2Vs = Ve — Vauie ||; | 2Vants — Voo — Vo ||,

3

1 2V7 = Vs — Vonis ||, | 2Ve = Vi — Vania |, | 2Vs — Vi = Vonis ||, || 2Vante — Vant2 — Vanir |, ®)

| 2Vont7 — Vonye — Vongs ||, || 2Vaenta — Vongs — Vongs || } }

By performing a subdividion step on I, one gets 2n + 17 new vertices V!, i = 1,...,2n + 17 (see Figure
3(b)). These control points form four control point sets 13, 113, TI3 and II}, representing control meshes
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Figure 3: (a) Ordering of control points of an extra-ordinary patch. (b) Ordering of new control points
(solid dots) after a Catmull-Clark subdivision.

of the subpatches S}, Si, Si and S}, respectively (see Figure 3(b)) where II} = {V}! | 1 <i <2n+38 },
and the other three control point sets ITj, [T} and IT} are shown in Figure 4. S} is an extra-ordinary patch
but S}, S} and S are regular patches. Therefore, second order norm similar to the one defined in (2) can
be defined for S}, S} and S}, while a second order norm similar to (3) can be defined for the control mesh
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Figure 4: Control vertices of subpatches S}, S} and S3.

of S}. We use M; to denote the second order norm of S}. This process can be iteratively repeated on S},
S2, S3, ... etc. We have the following lemma for a general S§ and its second order norm Mj, [5].

Lemma 2: For any k > 0, if M}, represents the second order norm of the extra-ordinary sub-patch Slg
after £ Catmull-Clark subdivision steps, then M, satisfies the following inequality

%Mk, n=3
M1 < B My, n=>5
(3 + 220 My, n>5s

Actually, the lemma works in a more general sense, i.e., if M} stands for the second order norm of
the control mesh My, instead of II§, the lemma still works. The second order norm of My, is defined as
follows: for regions not involving the extra-ordinary point, use standard SOFDs; for the vicinity of the
extra-ordinary point, use SOFDs defined in (3). The proof is essentially the same.



2.2.1 Distance Evaluation

To compute the distance between the extra-ordinary patch S(u,v) and the center face of its control mesh,
F = {V1, Vg, V5, V4}, we need to parameterize the patch S(u,v) first.
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Figure 5: Q-partition of the unit square.

By iteratively performing Catmull-Clark subdivision on S(u,v) = S{}, S}, S, ... etc, we get a sequence
of regular patches { S;* }, m > 1, b = 1,2,3, and a sequence of extra-ordinary patches { Si* }, m > 1.
The extra-ordinary patches converge to a limit point which is the value of S at (0,0) [8]. This limit point
and the regular patches { S;" }, m > 1, b = 1,2,3, form a partition of S. If we use )" to represent the
region of the parameter space that corresponds to S;” then { ;" }, m > 1, b =1,2,3, form a partition of
the unit square 2 = [0, 1] x [0,1] (see Figure 5) with

1 1 1 1 1 1 1 1 1 1
Q

0 5" Q3" =0, Q—m] X [Q_m’ W]' (4)

i ]
" om 2

1 :[Q—man—,l]X[

[2_ma Qm—,l] X [Q_ma Qm—,l],

The parametrization of S(u,v) is done as follows. For any (u,v) € © but (u,v) # (0,0), first find the ;"
that contains (u,v). m and b can be computed as follows.

1, if 2™u>1and2™v <1
m(u,v) = min{[logiu], [logiv]}, b(u,v) =< 2, if 2"u>1and2™v > 1 (5)
’ ’ 3, if 2™y <1 and 2Mv > 1

Then map this (2}" to the unit square with the following mapping
(u,v) = (U, Vi)
where

2m, if 2mt <1

bm = (278 %01 = { Mg — 1, if 2mt>1 (6)

The value of S(u,v) is equal to the value of S} at (u,,v.,), i.e.,
S(u,v) = Sy (tm, Vm)-

Let L} (u,v) be the bilinear parametrization of the center face of S;*’s control mesh. Since S} is a regular
patch, following Lemma 1, we have

1
5" (u, v) = 85" (w, 0)|| < S My"

where My" is the second order norm of the contol mesh of S;*. The second order norm of S is smaller
than the second order norm of M,,,, M,,. Hence, the above inequality can be written as

m m 1
HLb (U,’U) - Sb (U,’U)H S ng (7)



If we use L(u,v) to represent the bilinear parametrization of the center face of S(u,v)’s control mesh
F ={V,Vgs, V5, Vy4}
L(u,v) = (1 —v)[(1 —u)Vi +uVe] +v[(1 —u)Vs+uVs], 0<uv<1
then the maximum distance between S(u,v) and its control mesh can be written as
| L(u,v) = S(u,v) | < L(u,v) = Lg" (tm, vin) || + [|Lg" (thrm s vm) — S(u, 0) || (8)
where 0 < u,v < 1 and u,, and v,, are defined in (6). The second term on the right hand side of the
inequality can be evaluated using (7). Hence, one only needs to work with the first term on the right hand

side of the inequality.
It is easy to see that if (u,v) € Q" then (u,v) € QF for any 0 < k < m where

3 1 L,

Q5 = [0, 2—k] x [0, oF
Qﬁ corresponds to the subpatch Sﬁ. This means that (2Fu,2%v) is within the parameter space of Sg for
0 <k <m,ie., (2%u,2%v) = (ug,v;) where uy, and vy, are defined in (6). Consequently, we can consider
Lg(uk,vk) for 0 < k < m where Lﬁ is the bilinear parametrization of the center face of the control mesh
of 8§ (with the understanding that L) = L and (ug, vg) = (u,v)). Hence, the first term on the right hand
side of (8) can be written as

m—2

L, v) — L3 (o, o)1 < D NG (e, v) — Lg ™ (g, o) |+ LG (1, 0m1) — L (i, o) |- (9)
k=0

The following two lemmas are needed in the evaluation of the right side of the above inequality.

Lemma 3: If (u,v) € Q)" where b and m are defined in (5) then for any 0 < k < m — 1 we have

1

k k

My,
where M, is the second order norm of M} and Lg = L.
Lemma 4: If (u,v) € Q;" where b and m are defined in (5) then we have

%Mmfla 7’f b=2

I L (wm1, vm—1) — Ly (wm, vm) || < X '
sMpy 1, if b=1lor3

where M,,,_ is the second order norm of M,,_1.

By applying Lemmas 3 and 4 on (9) and then using (7) on (8), we have the following lemma on the
distance between an extra-ordinary CCSS patch S(u,v) and its control mesh L(u,v) [5].

Lemma 5: The maximum of || L(u,v) — S(u,v) || satisfies the following inequality

( My, n=23
2 M, n=>5

| L(u,v) — S(u,v) || < g, 5<m<8 (10)
\ WZM%, n>8

where M = M, is the second order norm of the extra-ordinary patch S(u,v).



2.2.2 Subdivision Depth Computation

Lemma 5 can be used to estimate the distance between a level-k control mesh and the surface patch for
any k > 0. This is because the distance between a level-k control mesh and the surface patch is dominated
by the distance between the level-k extra-ordinary subpatch and the corresponding control mesh which,
accoriding to Lemma 5, is

Mka n = 3
| L v) — S(uo) || < 4 M, 5<n<s
2
= snras) Mk n>8

where My, is the second order norm of S(u,v)’s level-k control mesh My. The previous subdivision depth
computation technique for extra-ordinary surface patches is obtained by combining the above result with
Lemma 2 [5].

Theorem 6: Given an extra-ordinary surface patch S(u,v) and an error tolerance e, if k levels of
subdivisions are iteratively performed on the control mesh of S(u,v), where

M
k= [logw —-‘
z€e

with M being the second order norm of S(u,v) defined in (3),

%’ n = 3 ]_, n = 3
25 25
w=1{ 75 n=>5 and z=1< Tz 5<n<8
4n? 2(n?%—8n+46
3n7+8n_46" n>5 An”Ent48) 3 ), n>8

then the distance between S(u,v) and the level-k control mesh is smaller than e.

3 New Subdivision Depth Computation Technique for Extra-Ordinary
Patches

The SOFDs involved in the second order norm of an extra-ordinary CCSS patch (see eq. (3)) can be
classified into two groups: group I and group II. Group I contains those SOFDs that involve vertices in
the vicinity of the extra-ordinary vertex (see Figure 6(a)). These are the first 2n SOFDs in (3). Group II
contains the remaining SOFDs, i.e., SOFDs that involve vertices in the vicinity of the other three vertices
of S (see Figure 6(b)). These are the last 10 SOFDs in (3). It is easy to see that the convergence rate
of the SOFDs in group II is the same as the regular case, i.e., 1/4 [4]. Therefore, to study properties
of the second order norm M, it is sufficient to study norms of the SOFDs in group I. The maximum of
these norms will be called the second order norm of group I. We will use M = Mj to represent group I’s
second order norm as well because norms of group I’s SOFDs dominate norms of group I1I's SOFDs. For
convenience of reference, in the subsequent discussion we shall simply use the term “second order norm of
an extra-ordinary CCSS patch” to refer to the “second order norm of group I of an extra-ordinary CCSS
patch”.

3.1 Matrix based Rate of Convergence

The second order norm of S = S} can be put in matrix form as follows:

M = ||AP]|
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Figure 6: (a) Vicinity of the extra-ordinary point. (b) Vicinity of the other three vertices of S.

where A is a 2n * (2n + 1) matrix

2 -1 0 0 0 —-10 0 -~ 0 0
2 0 0 -1 0 00 -1 0 0
2 0 0 0 0 —-10 0 0 0
A=|2 0 0 -1 0 00 O -1 0
0 2 -1 0 0 00 0 0 —
0 0 -1 2 -1 00 0 0 0
0 0 0 0 0 00 0 --- 2 —1|

and P is a control point vector
P= [Vla V2a V3a sty V2n+1]T-

A is called the second order norm matriz for extra-ordinary CCSS patches. If i levels of Catmull-Clark
subdivision are performed on the control mesh of S = S then, following the notation of Section 2, we have
an extra-ordinary subpatch S% whose second order norm can be expressed as:

Mi = [ane]

where A is a subdivision matrix of dimension (2n + 1) % (2n + 1). The function of A is to perform a
subdivision step on the 2n + 1 control vertices around (and including) the extra-ordinary point (see Figure
6(a)). For example, when n = 3, A is of the following form:

[ 5/12  1/6 1/36 1/6 1/36 1/6 1/36
3/8 3/8 1/16 1/16 0 1/16 1/16
1/4 1/4 1/4 1/4 0 0 0

A=| 3/8 1/16 1/16 3/8 1/16 1/16 0

1/4 0 0 1/4 1/4 1/4 0

3/8 1/16 0 1/16 1/16 3/8 1/16

1/4 1/4 0 0 0 1/4 1/4

We are interested in knowing the relationship between |AP||  and |[AA'P|_ . We need two lemmas for
this relationship. The first one shows the explicit form of ATA where AT is the pseudo-inverse of A. The



second one shows that A*A can act as a right identity matrix for AA’.

Lemma 7: The product of the second order norm matrix A and its pseudo-inverse matrix A" can be
expressed as follows:

H, n=2k+1
ATA = H+E, n =4k + 2 (11)
H+E+W+7Z, n =4k

where k is a positive integer, and H, E, W and Z are (2n+ 1) x (2n + 1) matrices of the following form with
H being a circulant matrix:

(00 0 0 0 0 0 ]
00 0 0 0 0 0
00 -10 1 0 1
3?;711 jj 00 0 0 0 0 0
Lo _ _ L0010 1o -1
= i1 : : : =%/00 0 0 0 0 0 |
-1 -1 2 —1
b b 00 10 1 0 1
00 0 0 0
00 1 0 10 1
[0 00 00 0] (00 0 0 0 0 - 0]
0 -1 0 00 0 00 -10 1 0 - 1
0 10 10 0 00 20 0 0 - 0
0 00 ~10 0 00 10 10 - —1
0 10 -1 0 0 00 0 0 -20 - -2
w_z2|0 10 00 0 Lo |00 10 10
=@ |0 10 10 0| =% [00 2 0 0 0 - 0
0 00 10 0 00 1 0 1 0 - 1
0 -1 0 10 0 00 0 0 2 0 - 2
0 00 10 0 00 1 0 1 0 1
(0 -1 0 10 0 (00 0 0 0 2 |

Proof We prove that if n = 2k + 1 for some positive integer k then ATA = H where H is defined above.
From properties of pseudo-inverse matrices [2], we know that

ATA = ATA

where Al is a left weak generalized inverse matriz of A, ie., A" is a matrix satisfying the following
conditions

AATA = A
AFAAL = AL (12)
(AFA)T = ALA

Thus, to prove ATA = H, we just need to show that there exists a left weak generalized matrix AL of A
such that A”A = H. We first prove that there exists a (2n 4 1) * (2n) matrix C such that

CA=H. (13)



(13) is equivalant to
ATCT =AT[C1 Cy -+ Cypp] =H" =H =[H; Hy --- Hap1]

where C;fp are row vectors of C and H; are column vectors of H. This is a system of 2n+ 1 linear equations:
ATC; =H;,i=1,2,...,2n + 1. Each of these systems has a solution C; because

rank(AT) = rank(A—;fp) <2n+1
where A_;-F = [AT H,|. Hence, there is at least one solution for C in (13) when n = 2k + 1.
It can be proved that there is no solution for CA = H when n = 4k + 2 because for some C; we

would have rank(AT) < rank(AT). However, there is at least one solution for CA = H + E. Same for
CA=H+E+W+Z when n = 4k.

It is easy to verify that, when n = 2k + 1, the matrix C satisfies conditions 1 and 3 in (12), i.e.,
ACA=AH=A and (CA)! = CA.

As far as the second condition is concerned, there are two possibilities for CAC:
Case 1: CAC=C

In this case, C is a left weak generalized inverse of matrix A. Hence, we have ATA = CA = H.
Case 2: CAC = C+ D, where D # 0.

We claim, in this case, C+D is a left weak generalized matrix of A and C+ D is also a solution of (13).
We first show that C + D is also a solution of (13). Note that H?> = H. Hence, we have:

(C+D)A =CACA =H? =H = CA.
This also shows that DA = 0. To prove that C + D is a left weak generalized matrix of A, note that

A(C+D)A =ACA + ADA = ACA = A, and
(C+D)A(C 4+ D) = CA(C + D) + DA(C + D) = CA(C + D)
~CAC+CAD=CAC=C+D

The second equation is true because
CAC = CACAC = CA(C+ D) = CAC + CAD.

Therefore, the first and second conditions of (12) are satisfied. We also have ((C + D)A)?T = (C + D)A
because (C+D)A = H and H is a symmetric matrix. Hence, C+D is indeed a left weak generalized matrix
of A. Consequently, we have ATA = (C + D)A = H.

The other two cases n = 4k + 2 and n = 4k can be proved similarly. O
Lemma 8: AT A is a right identity matrix of AA?, i.e., AANPATA = AA?, for any i.

Proof We prove the case n = 2k + 1 first. Let F be a (2n + 1) % (2n + 1) Fourier transform matrix

1 1 T .- 1 1

1 w w2 w2n71 w2n

1 1 w? Wt ... in2 win

V2n+1

2 2
2n in . w4n 2n w4n



2mi/(2n+1)

where w = ¢ . It is easy to see that

1 0 - 0

0o o0 - 0
F*HF =1 i

0 0 0

where T'is a (2n + 1) * (2n + 1) identity matrix. Hence, when n = 2k + 1 we have

10 0
' ' _ ' 00 --- 0
AA'ATA = AA'H = AN'FF*HFF* = ANFI - | . . |)F*
0 0 0
1 0 0 11 1
) . 0 0 --- 0 ) 111 1
= AAN" — AAN'F | | F* = AA" — AN
0 0 0 11 1
Note that
1 1 1
11 --- 1
AN | 1| =0
1 1 1

because the row sum of A is 0 and row sum of A is 1. Hence, we have AA* = AA’ATA when n = 2k + 1.
We next prove the lemma for n = 4k + 2. Note that in this case AE = %E and AE = 0. With these
results we have

; 1
ANE = ZAE = 0.

Hence, AN'ATA = AA'(H + E) = AAY

Finally, we prove the lemma for n = 4k. Similar to the previous case, we can prove that AW = %W,
AW =0 and AZ = %Zl, AZ = 0. Therefore, we have AA'W = %AW =0 and AA'Z = %AZ = (0. Hence,
ANATA = AN(H+E+ W+ Z) = AAL O

With this lemma, we have

APy, _ JANA AP,  JANA L IAP s _ g
|AP]_ AP - AP >

Use r; to represent ||AAiA+ ||OO Then, for any 0 < j < %, we have the following recurrence formula for r;
ri=|ANAY| =] AaTIATANAT] < |AnTIAY| ANAY| = (14)

where rg = 1. Hence, we have the following lemma on the convergence rate of second order norm of an
extra-ordinary CCSS patch.

Lemma 9: The second order norm of an extra-ordinary CCSS patch satisfies the following inquality:

M; < ri My (15)

11



where r; = ||AAZ'A+||OO and r; satisfies the recurrence formula (14).

The recurrence formula (14) shows that 7; in (15) can be replaced with ri. However, experiment data
show that, while the convergence rate changes by a constant ratio in most of the cases, there is a significant
difference between ro and r;. The value of ro is smaller than r? by a significant gap. Hence, if we use 7
for ; in (15), we would end up with a bigger subdivision depth for a given error tolerance. A better choice
is to use ro to bound r;, as follows.

3.2 Distance Evaluation

Following (8) and (9), the distance between the extra-ordinary CCSS patch S(u,v) and the center face of
its control mesh L(u,v) can be expressed as

IL(u, v) — S(u, v)|| < 33 L6 (uky 0r) — L6 ™ (unr, vk |+ LG (1, 0m-1) — Li (tm, o) |

+ [1LE" (W, vm) — S (tm, vm) ||
(17)
where m and b are defined in (5) and (u;,v;) are defined in (6). By applying Lemma 3, Lemma 4 and (7)
on the first, second and third terms of the right hand side of the above inequality, respectively, we get

m—2 m—2

1 1 1 1
IL(u, v) = S(u,v)]| < ¢ Z Mic + M1 + M < Mo(c Z P T+ 37m)
=0 =0

where ¢ = 1/min{n,8}. The last part of the above inequality follows from Lemma 8. Consequently,
through a simple algebra, we have

1_pd 11 j—1 j ] '
MO[C(PZE + 13% m) + 2— + 2, if m=2j
IL(w, v) = S(u, )| <
171"% 177'% ré 1"11"% . Y
Mole(1=; + =,m1) + 7 + =57, if m=2j+1

It can be easily proved that the maximum occurs at m = co. Hence, we have the following lemma.

Lemma 10: The maximum of ||L(u,v) — S(u,v)|| satisfies the following inequality

My 14+7r

L — <

where r; = ||[AA*AT || and M = My is the second order norm of the extra-ordinary patch S(u,v).

3.3 Subdivision Depth Computation

Lemma 9 can also be used to evaluate the distance between a level-¢ control mesh and the extra-ordinary
patch S(u,v) for any ¢ > 0. This is because the distance between a level-i control mesh and the surface
patch S(u, v) is dominated by the distance between the level-i extra-ordinary subpatch and the correspond-
ing control mesh which, accoriding to Lemma 9, is

Mi 1+ T1
min{n,8} 1 — ry

1L (u, v) — S(u, v)|| <
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where M; is the second order norm of S(u,v)’s level-i control mesh, M;. Hence, if the right side of the
above inequality is smaller than a given error tolerance e, then the distance between S(u,v) and the level-i
control mesh is smaller than e. Consequently, we have the following subdivision depth computation theo-
rem for extra-ordinary CCSS patches.

Theorem 11: Given an extra-ordinary surface patch S(u,v) and an error tolerance e, if
i = min{2l, 2k + 1}

levels of subdivision are iteratively performed on the control mesh of S(u,v), where

1 1 M
[ =Tlog ( o

1 M,
(= o k= llogy (—t e L0
7 min{n,8} 1 —ry €

G(min{n,S} 1—7ry €

with 7; = |AA’AY| o and M; being the second order norm of S(u,v), then the distance between S(u,v)
and the level-¢ control mesh is smaller than e.

4 Examples

The new subdivision depth technique has been inplemented in C++ on the Windows platform to compare
its performance with the previous approach. MatLab is used for both numerical and symbolic computation
of r; in the implementation. Table 1 shows the comparison results of the previous technique, Theorem 6,
with the new technique, Theorem 10. Two error tolerances 0.01 and 0.001 are considered and the second
order norm M, is assumed to be 2. For each error tolerance, we consider five different valences: 3, 5,
6, 7 and 8 for the extra-ordinary vertex. As can be seen from the table, the new technique has a 30%
improvement over the previous technique in most of the cases. Hence, the new technique indeed improves
the previous technique significantly.

To show that the rates of convergence are indeed difference between r; and 9, their values from several
typical extra-ordinary CCSS patches are included in Table 2. Note that when we compare r; and 79, the
value of r; should be squared first.

Table 1. Comparison between the old technique and the new technique

e =0.01 e = 0.001
N Old New Old New
Technique | Technique | Technique | Technique
3 14 9 19 12
5 16 11 23 16
6 19 16 27 22
7 23 14 33 22
8 37 27 49 33

Table 2. Values of r; and ry for some extra-ordinary patches.
N T1 T2

0.6667 | 0.2917
0.7200 | 0.4016
0.8889 | 0.5098
0.8010 | 0.5121
1.0078 | 0.5691

0| 3| O] O W
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5

Conclusions

A new subdivision depth computation technique for extra-ordinary CCSS patches is presented. Like the
previous technique, the subdivision depth is computed based on norms of the second order forward differ-
ences of the control points. However, the computation process is performed on matrix representation of
the second order norm, which gives us a better bound of the convergence rate and, consequently, a tighter
subdivision depth for a given error tolerance. Test results show that the new technique improves the
previous technique by about 30% in most of the cases. This is a significant result because of the exponen-
tial nature of the subdivision process. We are not sure if the new technique can be further improved though.
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