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tA new subdivision depth 
omputation te
hnique for extra-ordinary Catmull-Clark subdivision sur-fa
e (CCSS) pat
hes is presented. The new te
hnique improves a previous te
hnique by using a matrixrepresentation of the se
ond order norm in the 
omputation pro
ess. This enables us to get a morepre
ise estimate of the rate of 
onvergen
e of the se
ond order norm of an extra-ordinary CCSS pat
hand, 
onsequently, a more pre
ise subdivision depth for a given error toleran
e.Keywords: subdivision surfa
es, subdivision depth 
omputation1 Introdu
tionGiven a Catmull-Clark subdivision surfa
e (CCSS) pat
h, subdivision depth 
omputation is the pro
essof determining how many times the 
ontrol mesh of the CCSS pat
h should be subdivided so that thedistan
e between the resulting 
ontrol mesh and the surfa
e pat
h is smaller than a given error toleran
e.Good subdivision depth 
omputation te
hniques are important be
ause they allows us to meet pre
isionrequirement in appli
ations su
h as trimming, �nite element mesh generation, boolean operations, andtessellation of a CCSS without ex
essively subdividing its 
ontrol mesh.A good subdivision depth 
omputation te
hnique requires pre
ise estimate of the distan
e between the
ontrol mesh and the limit surfa
e. Optimum distan
e evaluation te
hniques for regular CCSS pat
hesare available [4, 11℄. Distan
e evaluation for an extra-ordinary CCSS pat
h is more 
ompli
ated. A �rstattempt in that dire
tion is done in [4℄. The distan
e is evaluated by measuring norms of the �rst orderforward di�eren
es of the 
ontrol points. Sin
e �rst order forward di�eren
es 
an not measure the 
urvatureof a surfa
e but its dimension, the distan
e 
omputed by this approa
h is usually bigger than what it reallyis for regions already 
at enough and, 
onsequently, leads to over-estimated subdivision depth.An improved distan
e evaluation te
hnique for extra-ordinary CCSS pat
hes is presented in [5℄. Thedistan
e is evaluated by measuring norms of the se
ond order forward di�eren
es (
alled se
ond ordernorms) of the 
ontrol points of the given extra-ordinary CCSS pat
h. Sin
e se
ond order forward di�eren
es
an measure both height and width of a region, the distan
e 
omputed by this approa
h re
e
ts 
urvatureof the pat
h and, hen
e, leads to reasonable subdivision depths for regions already 
at enough. However,it has been observed re
ently that, for extra-ordinary CCSS pat
hes, the 
onvergen
e rate of se
ond ordernorm 
hanges with the subdivision pro
ess, espe
ially between the �rst subdivision level and the se
ondsubdivision level. Therefore, using a �xed 
onvergen
e rate in the distan
e evaluation pro
ess for allsubdivision levels would over-estimate the distan
e and, 
onsequently, over-estimate the subdivision depthas well.In this paper we present an improved subdivision depth 
omputation method for extra-ordinary CCSSpat
hes. The new te
hnique uses a matrix representation of the maximum se
ond order norm in the 
om-putation pro
ess to generate a re
urren
e formula. This re
urren
e formula allows the smaller 
onvergen
e1



rate of the se
ond subdivision level to be used as a bound in the evaluation of the maximum se
ond ordernorm and, 
onsequently, leads to a more pre
ise subdivision depth for the given error toleran
e.The remaining part of the paper is arranged as follows. A brief review of the ba
kground is given inSe
tion 2. A matrix based subdivision depth 
omputation te
hnique for extra-ordinary CCSS pat
hes ispresented in se
tion 3. Examples showing the new te
hnique improves the old one are presented in Se
tion4. Con
luding remarks are given in Se
tion 5.2 Problem Formulation and Ba
kgroundGiven a 
ontrol mesh M = M0, let �S be its Catmull-Clark subdivision surfa
e (CCSS). For ea
h interiorfa
e F of M, there is a 
orresponding pat
h S in the limit surfa
e �S. The 
ontrol mesh of S 
ontains F asthe 
enter fa
e. If we perform a Catmull-Clark subdivision step on the 
ontrol mesh, we get four new meshfa
es in the pla
e of F. This is the 
ase no matter F is a regular fa
e or an extra-ordinary fa
e. See Figure1(b) for the four new fa
es F00, F10, F01 and F11 in the pla
e of the extra-ordinary fa
e F shown in Figure1(a). Sin
e ea
h of these new fa
es 
orresponds to a quarter subpat
h of S, we shall 
all these new fa
essubfa
es of F even though they are not pyhsi
ally subsets of F. Therefore, ea
h subdivision step generatesfour new subfa
es for the 
enter fa
e F of the 
ontrol mesh. Be
ause the 
orresponden
e between F and Sis one-to-one, sometime, instead of saying performing a subdivision step on S, we simply say performing asubdivision step on F.
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Figure 1: (a) Control mesh of an extra-ordinary pat
h; (b) new verti
es and edges generated after aCatmull-Clark subdivision.The distan
e between an interior mesh fa
e F and the 
orresponding pat
h S is de�ned as the maximumof kL(u; v) � S(u; v)k: DF = max (u;v)2
 kL(u; v) � S(u; v)k (1)where 
 is the unit square parameter spa
e of S and L(u; v) is the bilinear parametrization of F on 
.DF is also 
alled the distan
e between S and its 
ontrol mesh. For a given � > 0, the subdivision depthof F with respe
t to � is a positive integer d su
h that if F is re
ursively subdivided d times, the distan
ebetween ea
h of the resulting subfa
es and the 
orresponding subpat
h is smaller than �. In the following,we review some of the previous results needed in the new work.2



2.1 Distan
e Evaluation for a Regular Pat
h
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Figure 2: De�nition of L(u; v) = (1� v)L1(u) + vL2(u) = (1� u)�L1(v) + u�L2(v).Let S(u; v) be a uniform bi
ubi
 B-spline surfa
e pat
h de�ned on the unit square 
 = [0; 1℄ � [0; 1℄with 
ontrol points Vi;j, 0 � i; j � 3, and let L(u; v) be the bilinear parametrization of the 
enter meshfa
e fV1;1;V2;1;V2;2;V1;2g (see Figure 2):L(u; v) = (1� v)[(1 � u)V1;1 + uV2;1℄ + v[(1 � u)V1;2 + uV2;2℄; 0 � u; v � 1:Then the distan
e between S(u; v) and L(u; v) satis�es the following lemma [4℄.Lemma 1: The distan
e between L(u; v) and S(u; v) satis�es the following inequalitymax0�u;v�1 kL(u; v) � S(u; v)k � 13Mwhere M is the se
ond order norm of S(u; v) de�ned as followsM = maxi;j f k2Vi;j �Vi�1;j �Vi+1;jk ; k2Vi;j �Vi;j�1 �Vi;j+1k g (2)2.2 Subdivision Depth Computation for Extra-Ordinary Pat
hesThe distan
e evaluation me
hanism of the previous subdivision depth 
omputation te
hnique for extra-ordinary CCSS pat
hes utilizes se
ond order norm as a measurement s
heme as well [5℄, but the patternof se
ond order forward di�eren
es (SOFDs) used in the distan
e evaluation pro
ess is di�erent from (2).Let Vi, i = 1; 2; :::; 2n + 8, be the 
ontrol points of an extra-ordinary pat
h S(u; v) = S00(u; v), withV1 being an extra-ordinary vertex of valen
e n. The 
ontrol points are ordered following J. Stam's fashion[14℄ (Figure 3(a)). The 
ontrol mesh of S(u; v) is denoted � = �00. The se
ond order norm of S, denotedM = M0, is de�ned as the maximum norm of the following SOFDs. There are 2n+ 10 of them.M = maxf f k2V1 �V2i �V2((i+1)%n+1)k j 1 � i � ng [ f k2V2(i%n+1) �V2i+1 �V2(i%n+1)+1k j 1 � i � ng[ f k 2V3 �V2 �V2n+8 k; k 2V4 �V1 �V2n+7 k; k 2V5 �V6 �V2n+6 k; k 2V2n+3 �V2n+2 �V2n+4 k;k 2V7 �V8 �V2n+5 k; k 2V6 �V1 �V2n+4 k; k 2V5 �V4 �V2n+3 k; k 2V2n+6 �V2n+2 �V2n+7 k;k 2V2n+7 �V2n+6 �V2n+8 k; k 2V2n+4 �V2n+3 �V2n+5 k g g (3)
By performing a subdividion step on �, one gets 2n+17 new verti
es V1i , i = 1; :::; 2n+17 (see Figure3(b)). These 
ontrol points form four 
ontrol point sets �10, �11, �12 and �13, representing 
ontrol meshes3
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Figure 3: (a) Ordering of 
ontrol points of an extra-ordinary pat
h. (b) Ordering of new 
ontrol points(solid dots) after a Catmull-Clark subdivision.of the subpat
hes S10, S11, S12 and S13, respe
tively (see Figure 3(b)) where �10 = fV1i j 1 � i � 2n + 8 g,and the other three 
ontrol point sets �11, �12 and �13 are shown in Figure 4. S10 is an extra-ordinary pat
hbut S11, S12 and S13 are regular pat
hes. Therefore, se
ond order norm similar to the one de�ned in (2) 
anbe de�ned for S11, S12 and S13, while a se
ond order norm similar to (3) 
an be de�ned for the 
ontrol mesh
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Figure 4: Control verti
es of subpat
hes S11, S12 and S13.of S10. We use M1 to denote the se
ond order norm of S10. This pro
ess 
an be iteratively repeated on S10,S20, S30, ... et
. We have the following lemma for a general Sk0 and its se
ond order norm Mk [5℄.Lemma 2: For any k � 0, if Mk represents the se
ond order norm of the extra-ordinary sub-pat
h Sk0after k Catmull-Clark subdivision steps, then Mk satis�es the following inequalityMk+1 � 8>>><>>>: 23Mk; n = 31825Mk; n = 5(34 + 8n�464n2 )Mk; n > 5 :A
tually, the lemma works in a more general sense, i.e., if Mk stands for the se
ond order norm ofthe 
ontrol mesh Mk, instead of �k0 , the lemma still works. The se
ond order norm of Mk is de�ned asfollows: for regions not involving the extra-ordinary point, use standard SOFDs; for the vi
inity of theextra-ordinary point, use SOFDs de�ned in (3). The proof is essentially the same.4



2.2.1 Distan
e EvaluationTo 
ompute the distan
e between the extra-ordinary pat
h S(u; v) and the 
enter fa
e of its 
ontrol mesh,F = fV1;V6;V5;V4g, we need to parameterize the pat
h S(u; v) �rst.
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-partition of the unit square.By iteratively performing Catmull-Clark subdivision on S(u; v) = S00, S10, S20, ... et
, we get a sequen
eof regular pat
hes f Smb g, m � 1, b = 1; 2; 3, and a sequen
e of extra-ordinary pat
hes f Sm0 g, m � 1.The extra-ordinary pat
hes 
onverge to a limit point whi
h is the value of S at (0; 0) [8℄. This limit pointand the regular pat
hes f Smb g, m � 1, b = 1; 2; 3, form a partition of S. If we use 
mb to represent theregion of the parameter spa
e that 
orresponds to Smb then f 
mb g, m � 1, b = 1; 2; 3, form a partition ofthe unit square 
 = [0; 1℄ � [0; 1℄ (see Figure 5) with
m1 = [ 12m ; 12m�1 ℄� [0; 12m ℄; 
m2 = [ 12m ; 12m�1 ℄� [ 12m ; 12m�1 ℄; 
m3 = [0; 12m ℄� [ 12m ; 12m�1 ℄: (4)The parametrization of S(u; v) is done as follows. For any (u; v) 2 
 but (u; v) 6= (0; 0), �rst �nd the 
mbthat 
ontains (u; v). m and b 
an be 
omputed as follows.m(u; v) = minfdlog 12ue; dlog 12 veg; b(u; v) = 8><>: 1; if 2mu � 1 and 2mv � 12; if 2mu � 1 and 2mv � 13; if 2mu � 1 and 2mv � 1 (5)Then map this 
mb to the unit square with the following mapping(u; v)! (um; vm)where tm = (2mt)%1 = ( 2mt; if 2mt � 12mt� 1; if 2mt > 1 (6)The value of S(u; v) is equal to the value of Smb at (um; vm), i.e.,S(u; v) = Smb (um; vm):Let Lmb (u; v) be the bilinear parametrization of the 
enter fa
e of Smb 's 
ontrol mesh. Sin
e Smb is a regularpat
h, following Lemma 1, we have kLmb (u; v)� Smb (u; v)k � 13Mmbwhere Mmb is the se
ond order norm of the 
ontol mesh of Smb . The se
ond order norm of Smb is smallerthan the se
ond order norm of Mm, Mm. Hen
e, the above inequality 
an be written askLmb (u; v) � Smb (u; v)k � 13Mm: (7)5



If we use L(u; v) to represent the bilinear parametrization of the 
enter fa
e of S(u; v)'s 
ontrol meshF = fV1;V6;V5;V4gL(u; v) = (1� v)[(1 � u)V1 + uV6℄ + v[(1 � u)V4 + uV5℄; 0 � u; v � 1then the maximum distan
e between S(u; v) and its 
ontrol mesh 
an be written ask L(u; v)� S(u; v) k � k L(u; v)� Lmb (um; vm)k+ kLmb (um; vm)� S(u; v) k (8)where 0 � u; v � 1 and um and vm are de�ned in (6). The se
ond term on the right hand side of theinequality 
an be evaluated using (7). Hen
e, one only needs to work with the �rst term on the right handside of the inequality.It is easy to see that if (u; v) 2 
mb then (u; v) 2 
k0 for any 0 � k < m where
k0 = [0; 12k ℄� [0; 12k ℄:
k0 
orresponds to the subpat
h Sk0. This means that (2ku; 2kv) is within the parameter spa
e of Sk0 for0 � k < m, i.e., (2ku; 2kv) = (uk; vk) where uk and vk are de�ned in (6). Consequently, we 
an 
onsiderLk0(uk; vk) for 0 � k < m where Lk0 is the bilinear parametrization of the 
enter fa
e of the 
ontrol meshof Sk0 (with the understanding that L00 = L and (u0; v0) = (u; v)). Hen
e, the �rst term on the right handside of (8) 
an be written askL(u; v)�Lmb (um; vm)k � m�2Xk=0 kLk0(uk; vk)�Lk+10 (uk+1; vk+1)k+kLm�10 (um�1; vm�1)�Lmb (um; vm)k: (9)The following two lemmas are needed in the evaluation of the right side of the above inequality.Lemma 3: If (u; v) 2 
mb where b and m are de�ned in (5) then for any 0 � k < m� 1 we havek Lk0(uk; vk)� Lk+10 (uk+1; vk+1) k � 1minf n; 8 gMkwhere Mk is the se
ond order norm of Mk and L00 = L.Lemma 4: If (u; v) 2 
mb where b and m are de�ned in (5) then we havek Lm�10 (um�1; vm�1)� Lmb (um; vm) k � 8<: 14Mm�1; if b = 218Mm�1; if b = 1 or 3where Mm�1 is the se
ond order norm of Mm�1.By applying Lemmas 3 and 4 on (9) and then using (7) on (8), we have the following lemma on thedistan
e between an extra-ordinary CCSS pat
h S(u; v) and its 
ontrol mesh L(u; v) [5℄.Lemma 5: The maximum of k L(u; v)� S(u; v) k satis�es the following inequalityk L(u; v)� S(u; v) k � 8>>>>>>><>>>>>>>:
M0; n = 357M0; n = 54nn2�8n+46M0; 5 < n � 8n24(n2�8n+46)M0; n > 8 (10)where M = M0 is the se
ond order norm of the extra-ordinary pat
h S(u; v).6



2.2.2 Subdivision Depth ComputationLemma 5 
an be used to estimate the distan
e between a level-k 
ontrol mesh and the surfa
e pat
h forany k > 0. This is be
ause the distan
e between a level-k 
ontrol mesh and the surfa
e pat
h is dominatedby the distan
e between the level-k extra-ordinary subpat
h and the 
orresponding 
ontrol mesh whi
h,a

oriding to Lemma 5, isk Lk(u; v) � S(u; v) k � 8>>><>>>: Mk; n = 31825Mk; 5 � n � 8n24(n2�8n+46)Mk; n > 8where Mk is the se
ond order norm of S(u; v)'s level-k 
ontrol mesh Mk. The previous subdivision depth
omputation te
hnique for extra-ordinary surfa
e pat
hes is obtained by 
ombining the above result withLemma 2 [5℄.Theorem 6: Given an extra-ordinary surfa
e pat
h S(u; v) and an error toleran
e �, if k levels ofsubdivisions are iteratively performed on the 
ontrol mesh of S(u; v), wherek = �logwMz� �with M being the se
ond order norm of S(u; v) de�ned in (3),w = 8>>><>>>: 32 ; n = 32518 ; n = 54n23n2+8n�46 ; n > 5 and z = 8>>><>>>: 1; n = 32518 ; 5 � n � 82(n2�8n+46)n2 ; n > 8then the distan
e between S(u; v) and the level-k 
ontrol mesh is smaller than �.3 New Subdivision Depth Computation Te
hnique for Extra-OrdinaryPat
hesThe SOFDs involved in the se
ond order norm of an extra-ordinary CCSS pat
h (see eq. (3)) 
an be
lassi�ed into two groups: group I and group II. Group I 
ontains those SOFDs that involve verti
es inthe vi
inity of the extra-ordinary vertex (see Figure 6(a)). These are the �rst 2n SOFDs in (3). Group II
ontains the remaining SOFDs, i.e., SOFDs that involve verti
es in the vi
inity of the other three verti
esof S (see Figure 6(b)). These are the last 10 SOFDs in (3). It is easy to see that the 
onvergen
e rateof the SOFDs in group II is the same as the regular 
ase, i.e., 1=4 [4℄. Therefore, to study propertiesof the se
ond order norm M , it is suÆ
ient to study norms of the SOFDs in group I. The maximum ofthese norms will be 
alled the se
ond order norm of group I. We will use M = M0 to represent group I'sse
ond order norm as well be
ause norms of group I's SOFDs dominate norms of group II's SOFDs. For
onvenien
e of referen
e, in the subsequent dis
ussion we shall simply use the term \se
ond order norm ofan extra-ordinary CCSS pat
h" to refer to the \se
ond order norm of group I of an extra-ordinary CCSSpat
h".3.1 Matrix based Rate of Convergen
eThe se
ond order norm of S = S00 
an be put in matrix form as follows:M = kAPk17
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inity of the extra-ordinary point. (b) Vi
inity of the other three verti
es of S.where A is a 2n � (2n+ 1) matrix
A =

266666666666666664
2 �1 0 0 0 �1 0 0 � � � 0 02 0 0 �1 0 0 0 �1 � � � 0 02 0 0 0 0 �1 0 0 � � � 0 0...2 0 0 �1 0 0 0 0 � � � �1 00 2 �1 0 0 0 0 0 � � � 0 �10 0 �1 2 �1 0 0 0 � � � 0 0...0 0 0 0 0 0 0 0 � � � 2 �1

377777777777777775and P is a 
ontrol point ve
tor P = [V1; V2; V3; : : : ; V2n+1℄T :A is 
alled the se
ond order norm matrix for extra-ordinary CCSS pat
hes. If i levels of Catmull-Clarksubdivision are performed on the 
ontrol mesh of S = S00 then, following the notation of Se
tion 2, we havean extra-ordinary subpat
h Si0 whose se
ond order norm 
an be expressed as:Mi = 


A�iP


1where � is a subdivision matrix of dimension (2n + 1) � (2n + 1). The fun
tion of � is to perform asubdivision step on the 2n+1 
ontrol verti
es around (and in
luding) the extra-ordinary point (see Figure6(a)). For example, when n = 3, � is of the following form:
� = 266666666664

5=12 1=6 1=36 1=6 1=36 1=6 1=363=8 3=8 1=16 1=16 0 1=16 1=161=4 1=4 1=4 1=4 0 0 03=8 1=16 1=16 3=8 1=16 1=16 01=4 0 0 1=4 1=4 1=4 03=8 1=16 0 1=16 1=16 3=8 1=161=4 1=4 0 0 0 1=4 1=4
377777777775 :We are interested in knowing the relationship between kAPk1 and 

A�iP

1. We need two lemmas forthis relationship. The �rst one shows the expli
it form of A+A where A+ is the pseudo-inverse of A. The8



se
ond one shows that A+A 
an a
t as a right identity matrix for A�i.Lemma 7: The produ
t of the se
ond order norm matrix A and its pseudo-inverse matrix A+ 
an beexpressed as follows: A+A = 8><>: H; n = 2k + 1H+ E; n = 4k + 2H+ E+W+ Z; n = 4k (11)where k is a positive integer, and H, E, W and Z are (2n+1) � (2n+1) matri
es of the following form withH being a 
ir
ulant matrix:
H � 12n+1 26666664 2n �1 � � � �1 �1�1 2n � � � �1 �1... ...�1 �1 � � � 2n �1�1 �1 � � � �1 2n

37777775 ; E = 1n
2666666666666666664
0 0 0 0 0 0 � � � 00 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �10 0 0 0 0 0 � � � 0... ...0 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �1

3777777777777777775 ;

W = 23n
266666666666666666666664
0 0 0 0 0 � � � 00 �1 0 0 0 � � � 00 �1 0 �1 0 � � � 00 0 0 �1 0 � � � 00 1 0 �1 0 � � � 00 1 0 0 0 � � � 00 1 0 1 0 � � � 00 0 0 1 0 � � � 00 �1 0 1 0 � � � 0... ...0 0 0 1 0 � � � 00 �1 0 1 0 � � � 0

377777777777777777777775
; Z = 23n

266666666666666666666664
0 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 �2 0 0 0 � � � 00 0 �1 0 �1 0 � � � �10 0 0 0 �2 0 � � � �20 0 1 0 �1 0 � � � �10 0 2 0 0 0 � � � 00 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2... ...0 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2

377777777777777777777775
:

Proof We prove that if n = 2k+1 for some positive integer k then A+A = H where H is de�ned above.From properties of pseudo-inverse matri
es [2℄, we know thatA+A = ALAwhere AL is a left weak generalized inverse matrix of A, i.e., AL is a matrix satisfying the following
onditions AALA = AALAAL = AL(ALA)T = ALA (12)Thus, to prove A+A = H, we just need to show that there exists a left weak generalized matrix AL of Asu
h that ALA = H. We �rst prove that there exists a (2n+ 1) � (2n) matrix C su
h thatC A = H: (13)9



(13) is equivalant toATCT = AT [C1 C2 � � � C2n+1℄ = HT = H = [H1 H2 � � � H2n+1℄where CTi are row ve
tors of C and Hi are 
olumn ve
tors of H. This is a system of 2n+1 linear equations:ATCi = Hi, i = 1; 2; :::; 2n + 1. Ea
h of these systems has a solution Ci be
auserank(AT ) = rank(ATi ) < 2n+ 1where ATi = hAT Hii. Hen
e, there is at least one solution for C in (13) when n = 2k + 1.It 
an be proved that there is no solution for CA = H when n = 4k + 2 be
ause for some Ci wewould have rank(AT ) < rank(ATi ). However, there is at least one solution for CA = H + E. Same forCA = H+ E+W+ Z when n = 4k.It is easy to verify that, when n = 2k + 1, the matrix C satis�es 
onditions 1 and 3 in (12), i.e.,ACA = AH = A and (CA)T = CA:As far as the se
ond 
ondition is 
on
erned, there are two possibilities for CAC:Case 1: CAC = CIn this 
ase, C is a left weak generalized inverse of matrix A. Hen
e, we have A+A = CA = H.Case 2: CAC = C+D, where D 6= 0.We 
laim, in this 
ase, C+D is a left weak generalized matrix of A and C+D is also a solution of (13).We �rst show that C + D is also a solution of (13). Note that H2 = H. Hen
e, we have:(C + D)A = CACA = H2 = H = CA:This also shows that DA = 0. To prove that C + D is a left weak generalized matrix of A, note thatA(C + D)A = ACA +ADA = ACA = A; and(C + D)A(C + D) = CA(C +D) + DA(C +D) = CA(C +D)= CAC +CAD = CAC = C+DThe se
ond equation is true be
auseCAC = CACAC = CA(C +D) = CAC+CAD:Therefore, the �rst and se
ond 
onditions of (12) are satis�ed. We also have ((C + D)A)T = (C + D)Abe
ause (C+D)A = H and H is a symmetri
 matrix. Hen
e, C+D is indeed a left weak generalized matrixof A. Consequently, we have A+A = (C +D)A = H.The other two 
ases n = 4k + 2 and n = 4k 
an be proved similarly. 2Lemma 8: A+A is a right identity matrix of A�i, i.e., A�iA+A = A�i, for any i.Proof We prove the 
ase n = 2k + 1 �rst. Let F be a (2n+ 1) � (2n+ 1) Fourier transform matrixF = 1p2n+ 1 26666664 1 1 1 � � � 1 11 ! !2 � � � !2n�1 !2n1 !2 !4 � � � !4n�2 !4n... ... ...1 !2n !4n � � � !4n2�2n !4n2
3777777510



where ! = e2�i=(2n+1). It is easy to see thatF�HF = I� 266664 1 0 � � � 00 0 � � � 0... ... ...0 0 � � � 0 377775where I is a (2n+ 1) � (2n+ 1) identity matrix. Hen
e, when n = 2k + 1 we haveA�iA+A = A�iH = A�iFF�HFF� = A�iF(I� 266664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 377775)F�= A�i �A�iF266664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 377775F� = A�i �A�i 266664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 377775 :Note that A�i 266664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 377775 = 0be
ause the row sum of A is 0 and row sum of � is 1. Hen
e, we have A�i = A�iA+A when n = 2k + 1.We next prove the lemma for n = 4k + 2. Note that in this 
ase �E = 14E and AE = 0. With theseresults we have A�iE = 14iAE = 0:Hen
e, A�iA+A = A�i(H + E) = A�i.Finally, we prove the lemma for n = 4k. Similar to the previous 
ase, we 
an prove that �W = 12W,AW = 0 and �Z = 12Z1, AZ = 0. Therefore, we have A�iW = 12iAW = 0 and A�iZ = 12iAZ = 0. Hen
e,A�iA+A = A�i(H + E +W+ Z) = A�i. 2With this lemma, we have

A�iP

1kAPk1 = 

A�iA+AP

1kAPk1 � 

A�iA+

1 kAPk1kAPk1 = 


A�iA+


1Use ri to represent 

A�iA+

1. Then, for any 0 < j < i, we have the following re
urren
e formula for riri � 


A�iA+


1 = 


A�i�jA+A�jA+


1 � 


A�i�jA+


1 


A�jA+


1 = ri�j rj (14)where r0 = 1. Hen
e, we have the following lemma on the 
onvergen
e rate of se
ond order norm of anextra-ordinary CCSS pat
h.Lemma 9: The se
ond order norm of an extra-ordinary CCSS pat
h satis�es the following inquality:Mi � ri M0 (15)11



where ri = 

A�iA+

1 and ri satis�es the re
urren
e formula (14).The re
urren
e formula (14) shows that ri in (15) 
an be repla
ed with ri1. However, experiment datashow that, while the 
onvergen
e rate 
hanges by a 
onstant ratio in most of the 
ases, there is a signi�
antdi�eren
e between r2 and r1. The value of r2 is smaller than r21 by a signi�
ant gap. Hen
e, if we use ri1for ri in (15), we would end up with a bigger subdivision depth for a given error toleran
e. A better 
hoi
eis to use r2 to bound ri, as follows.ri � 8><>: rj2; i = 2jr1rj2; i = 2j + 1 (16)3.2 Distan
e EvaluationFollowing (8) and (9), the distan
e between the extra-ordinary CCSS pat
h S(u; v) and the 
enter fa
e ofits 
ontrol mesh L(u; v) 
an be expressed askL(u; v) � S(u; v)k �Pm�2k=0 kLk0(uk; vk)� Lk+10 (uk+1; vk+1)k+ kLm�10 (um�1; vm�1)� Lmb (um; vm)k+ kLmb (um; vm)� Smb (um; vm)k (17)where m and b are de�ned in (5) and (ui; vi) are de�ned in (6). By applying Lemma 3, Lemma 4 and (7)on the �rst, se
ond and third terms of the right hand side of the above inequality, respe
tively, we getkL(u; v)� S(u; v)k � 
m�2Xk=0 Mk + 14Mm�1 + 13Mm �M0(
m�2Xk=0 rk + 14rm�1 + 13rm)where 
 = 1=minfn; 8g. The last part of the above inequality follows from Lemma 8. Consequently,through a simple algebra, we havekL(u; v) � S(u; v)k � 8>><>>: M0[
(1�rj21�r2 + 1�rj�121�r2 r1) + r1rj�124 + rj23 ℄; if m = 2jM0[
(1�rj21�r2 + 1�rj21�r2 r1) + rj24 + r1rj23 ℄; if m = 2j + 1It 
an be easily proved that the maximum o

urs at m =1. Hen
e, we have the following lemma.Lemma 10: The maximum of kL(u; v) � S(u; v)k satis�es the following inequalitykL(u; v) � S(u; v)k � M0minfn; 8g 1 + r11� r2where ri = kA�iA+k1 and M = M0 is the se
ond order norm of the extra-ordinary pat
h S(u; v).3.3 Subdivision Depth ComputationLemma 9 
an also be used to evaluate the distan
e between a level-i 
ontrol mesh and the extra-ordinarypat
h S(u; v) for any i > 0. This is be
ause the distan
e between a level-i 
ontrol mesh and the surfa
epat
h S(u; v) is dominated by the distan
e between the level-i extra-ordinary subpat
h and the 
orrespond-ing 
ontrol mesh whi
h, a

oriding to Lemma 9, iskLi(u; v) � S(u; v)k � Miminfn; 8g 1 + r11� r212



where Mi is the se
ond order norm of S(u; v)'s level-i 
ontrol mesh, Mi. Hen
e, if the right side of theabove inequality is smaller than a given error toleran
e �, then the distan
e between S(u; v) and the level-i
ontrol mesh is smaller than �. Consequently, we have the following subdivision depth 
omputation theo-rem for extra-ordinary CCSS pat
hes.Theorem 11: Given an extra-ordinary surfa
e pat
h S(u; v) and an error toleran
e �, ifi � minf2l; 2k + 1glevels of subdivision are iteratively performed on the 
ontrol mesh of S(u; v), wherel = dlog 1r2 ( 1minfn; 8g 1 + r11� r2 M0� )e ; k = dlog 1r2 ( r1minfn; 8g 1 + r11� r2 M0� )ewith ri = kA�iA+k1 and M0 being the se
ond order norm of S(u; v), then the distan
e between S(u; v)and the level-i 
ontrol mesh is smaller than �.4 ExamplesThe new subdivision depth te
hnique has been inplemented in C++ on the Windows platform to 
ompareits performan
e with the previous approa
h. MatLab is used for both numeri
al and symboli
 
omputationof ri in the implementation. Table 1 shows the 
omparison results of the previous te
hnique, Theorem 6,with the new te
hnique, Theorem 10. Two error toleran
es 0:01 and 0:001 are 
onsidered and the se
ondorder norm M0 is assumed to be 2. For ea
h error toleran
e, we 
onsider �ve di�erent valen
es: 3, 5,6, 7 and 8 for the extra-ordinary vertex. As 
an be seen from the table, the new te
hnique has a 30%improvement over the previous te
hnique in most of the 
ases. Hen
e, the new te
hnique indeed improvesthe previous te
hnique signi�
antly.To show that the rates of 
onvergen
e are indeed di�eren
e between r1 and r2, their values from severaltypi
al extra-ordinary CCSS pat
hes are in
luded in Table 2. Note that when we 
ompare r1 and r2, thevalue of r1 should be squared �rst.Table 1. Comparison between the old te
hnique and the new te
hnique� = 0:01 � = 0:001N Old New Old NewTe
hnique Te
hnique Te
hnique Te
hnique3 14 9 19 125 16 11 23 166 19 16 27 227 23 14 33 228 37 27 49 33Table 2. Values of r1 and r2 for some extra-ordinary pat
hes.N r1 r23 0.6667 0.29175 0.7200 0.40166 0.8889 0.50987 0.8010 0.51218 1.0078 0.569113



5 Con
lusionsA new subdivision depth 
omputation te
hnique for extra-ordinary CCSS pat
hes is presented. Like theprevious te
hnique, the subdivision depth is 
omputed based on norms of the se
ond order forward di�er-en
es of the 
ontrol points. However, the 
omputation pro
ess is performed on matrix representation ofthe se
ond order norm, whi
h gives us a better bound of the 
onvergen
e rate and, 
onsequently, a tightersubdivision depth for a given error toleran
e. Test results show that the new te
hnique improves theprevious te
hnique by about 30% in most of the 
ases. This is a signi�
ant result be
ause of the exponen-tial nature of the subdivision pro
ess. We are not sure if the new te
hnique 
an be further improved though.Referen
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