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Abstract. A second order forward differences based subdivision depth
computation technique for extra-ordinary Catmull-Clark subdivision sur-
face (CCSS) patches is presented. The new technique improves a previous
technique in that the computation of the subdivision depth is based on
the patch’s curvature distribution, instead of its dimension. Hence, with
the new technique, no excessive subdivision is needed for extra-ordinary
CCSS patches to meet the precision requirement and, consequently, one
can make trimming, finite element mesh generation, boolean operations,
and tessellation of CCSSs more efficient.

1 Introduction

Research work for subdivision surfaces has been done in several important areas,
such as surface parametrization [6][10][11][14], surface trimming [7], boolean op-
erations [1], mesh editing [13], and error estimate/control [3][12]. For instance,
given an error tolerance, [3] shows how many times the control mesh of a Catmull-
Clark subdivision surface (CCSS) patch should be recursively subdivided so
that the distance between the resulting control mesh and the limit surface patch
would be less than the error tolerance. This error control technique, called sub-
division depth computation, is required in all tessellation based applications of
CCSSs. [3]’s subdivision depth computation technique for regular CCSS patches
is optimum. However, for an extra-ordinary CCSS patch (a patch with an extra-
ordinary vertex), since the subdivision depth computed by [3] depends on first
order forward differences of the control points, its value could be bigger than
what it actually should be and, consequently, generates excessive mesh elements
for regions that are already flat enough.

In this paper we will present a new subdivision depth computation technique
for extra-ordinary CCSS patches. The new technique is based on the second order
forward differences of an extra-ordinary patch’s control points.. The computed
subdivision depth reflects the patch’s curvature distribution, not its dimension.
Hence, with the new technique, no excessive subdivision is needed for regions
that are already flat enough and, consequently, trimming, finite element mesh
generation, boolean operations, and tessellation of CCSSs can be made more
efficient.
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2 Problem Formulation and Background

Given the control mesh of an extra-ordinary CCSS patch and an error tolerance
ε, the goal here is to compute an integer d so that if the control mesh is iteratively
refined (subdivided) d times, then the distance between the resulting mesh and
the surface patch is smaller than ε. d is called the subdivision depth of the surface
patch with respect to ε. Before we show the computation technique, we need to
define related terms and review related techniques for regular CCSS patches.

2.1 Catmull-Clark Subdivision Surfaces

Given a control mesh, a CCSS is generated by iteratively refining (subdividing)
the control mesh to form new control meshes [2]. The refining process consists
of defining new vertices (face points, edge points and vertex points) and con-
necting the new vertices to form new edges and faces of a new control mesh.
The limit surface of the iteratively refined control meshes is called a subdivision
surface because the mesh refining (subdivision) process is a generalization of
the uniform bicubic B-spline surface subdivision technique. Therefore, CCSSs
include uniform B-spline surfaces and piecewise Bézier surfaces as special cases.
Actually CCSSs include non-uniform B-spline surfaces and NURBS surfaces as
special cases as well [9]. The control mesh of a CCSS patch and the new control
mesh after a refining (subdivision) process are shown in Figures 1(a) and (b),
respectively. This is a conceptual drawing, the location shown for a new vertex
might not be its exact physical location.
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Fig. 1. (a) Control mesh of an extra-ordinary patch; (b) new vertices and edges gen-
erated after a Catmull-Clark subdivision

The given control mesh will be referred to as M0 and the limit surface will
be referred to as S̄. For each positive integer k, Mk refers to the control mesh
obtained after applying the Catmull-Clark subdivision k times to M0.

The power of CCSSs comes from the way mesh vertices are connected. If the
number of edges connected to a mesh vertex is called its valence, then the valence
of an interior mesh vertex can be anything ≥ 3, instead of just four. Those mesh
vertices whose valences are different from four are called extra-ordinary vertices
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to distinguish them from the standard or regular mesh vertices. Vertex V in
Figure 1(a) is an extra-ordinary vertex of valence five. An interior mesh face is
called an extra-ordinary mesh face if it has an extra-ordinary vertex. Otherwise,
a standard or regular mesh face. Mesh face F in Figure 1(a) is an extra-ordinary
mesh face. we assume all the mesh faces in M0 are quadrilaterals and each mesh
face of M0 has at most one extra-ordinary vertex. Otherwise, simply perform
the subdivision step twice on the given control mesh.

For each interior face F of Mk, k ≥ 0, there is a corresponding patch S in
the limit surface S̄. F and S can be parametrized on the same parameter space
Ω = [0, 1]×[0, 1] [10]. F is a bilinear rule surface. S is a uniform bicubic B-spline
surface patch if F is a regular face. However, if F is an extra-ordinary face then
S, defined by 2n + 8 control points where n is the valence of F’s extra-ordinary
vertex, can not be parametrized as a uniform B-spline patch. In such a case, S
is called an extra-ordinary patch. Otherwise, a regular patch or standard patch.
The control mesh shown in Figure 1(a) is the control mesh of an extra-ordinary
patch whose extra-ordinary vertex is of valence five.

2.2 Distance and Subdivision Depth

For a given interior mesh face F, let S be the corresponding patch in the limit
surface S̄. The control mesh of S contains F as the center face. If we perform a
subdivision step on the control mesh, we get four new mesh faces in the place of
F. This is the case no matter F is a regular face or an extra-ordinary face (see
Figure 1(b) for the four new faces F00, F10, F01 and F11 obtained in the place
of the extra-ordinary face F shown in Figure 1(a)). Since each of these new faces
corresponds to a quarter subpatch of S, we shall call these new faces subfaces of
F even though they are not pyhsically subsets of F. Therefore, each subdivision
step generates four new subfaces for the center face F of the control mesh.
Because the correspondence between F and S is one-to-one, sometime, instead
of saying performing a subdivision step on S, we shall simply say performing a
subdivision step on F.

The distance between an interior mesh face F and the corresponding patch S
is defined as the maximum of ‖F(u, v) − S(u, v)‖:

DF = max (u,v)∈Ω ‖F(u, v) − S(u, v)‖ (1)

where Ω is the unit square parameter space of F and S. DF is also called the
distance between S and its control mesh. For a given ε > 0, the subdivision
depth of F with respect to ε is a positive integer d such that if F is recursively
subdivided d times, the distance between each of the resulting subfaces and the
corresponding subpatch is smaller than zero.

2.3 Subdivision Depth Computation for Regular Patches

A regular patch is a standard uniform bicubic B-spline surface patch. Therefore,
the computation process for a regular patch is the same as the computation
process for a standard uniform B-spline surface patch. We review the evaluation
of the distance between a B-spline patch and its control mesh first.
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Distance Evaluation. Let S(u, v) be a uniform bicubic B-spline surface patch
defined on the unit square Ω = [0, 1] × [0, 1] with control points Vi,j , 0 ≤
i, j ≤ 3, and let L(u, v) be the bilinear parametrization of the center mesh face
{V1,1,V2,1,V2,2,V1,2} (see Figure 2):
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Fig. 2. Definition of L(u, v) = (1 − v)L1(u) + vL2(u) = (1 − u)L̄1(v) + uL̄2(v)

L(u, v) = (1 − v)[(1 − u)V1,1 + uV2,1] + v[(1 − u)V1,2 + uV2,2], 0 ≤ u, v ≤ 1.

The distance between S(u, v) and L(u, v) satisfies the following lemma [3].

Lemma 1. The distance between L(u, v) and S(u, v) satisfies the following in-
equality

max
0≤u,v≤1

‖L(u, v) − S(u, v)‖ ≤ 1
3
M

where M is the second order norm of S(u, v) defined as follows

M = max
i,j

{ ‖2Vi,j − Vi−1,j − Vi+1,j‖, ‖2Vi,j − Vi,j−1 − Vi,j+1‖ } (2)

Recurrence Formula for Second Order Norm. Let Vi,j , 0 ≤ i, j ≤ 3, be
the control points of a uniform bicubic B-spline surface patch S(u, v). We use Vk

i,j

to represent the new control points of the surface patch after k levels of recursive
subdivision. The indexing of the new control points follows the convention that
Vk

0,0 is always the face point of the mesh face {Vk−1
0,0 ,Vk−1

1,0 ,Vk−1
1,1 ,Vk−1

0,1 }. The
new control points Vk

ij are called the level-k control points of S(u, v) and the
new control mesh will be called the level-k control mesh of S(u, v).

If we divide the parameter space of the surface patch, Ω, into 4k regions as
follows:

Ωk
mn = [

m

2k
,
m + 1

2k
] × [

n

2k
,
n + 1
2k

], 0 ≤ m, n ≤ 2k − 1

and denote the corresponding subpatches Sk
mn(u, v), then each Sk

mn(u, v) is a
uniform bicubic B-spline surface patch defined by the level-k control point set
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{Vk
pq | m ≤ p ≤ m + 3, n ≤ q ≤ n + 3}. Sk

mn(u, v) is called a level-k subpatch of
S(u, v). Let Lk

mn(u, v) be the bilinear parametrization of the center face of Sk
mn’s

control mesh, {Vk
pq | p = m + 1, m + 2; q = n + 1, n + 2}. We say the distance

between S(u, v) and the level-k control mesh is smaller than ε if the distance
between each level-k subpatch Sk

mn(u, v) and the corresponding level-k bilinear
plane Lk

mn(u, v), 0 ≤ m, n ≤ 2k − 1, is smaller than ε. A technique to compute
a subdivision depth k for a given ε so that the distance between S(u, v) and the
level-k control mesh is smaller than ε is presented in [3]. The following lemma is
needed in the derivation of the computation process. If we use Mk

mn to represent
the second order norm of Sk

mn(u, v), i.e., the maximum norm of the second order
forward differences of the control points of Sk

mn(u, v), then the lemma shows the
second order norm of Sk

mn(u, v) converges at a rate of 1/4 of the level-(k − 1)
second order norm [3].

Lemma 2. If Mk
mn is the second order norm of Sk

mn(u, v) then we have

Mk
mn ≤

(
1
4

)k

M (3)

where M is the second order norm of S(u, v) defined in (2).

Subdivision Depth Computation. With Lemmas 1 and 2, it is easy to see
that, for any 0 ≤ m, n ≤ 2k−1, we have

max
0≤u,v≤1

‖Lk
mn(u, v) − Sk

mn(u, v)‖ ≤ 1
3
Mk

mn ≤ 1
3

(
1
4

)k

M (4)

where Mk
mn and M are the second order norms of Sk

mn(u, v) and S(u, v), respec-
tively. Hence, if k is large enough to make the right side of the above inequality
smaller than ε, we have

max
0≤u,v≤1

‖Lk
mn(u, v) − Sk

mn(u, v)‖ ≤ ε

for every 0 ≤ m, n ≤ 2k−1. This leads to the following subdivision depth com-
putation process for a regular CCSS patch [3].

Theorem 3. Let Vij , 0 ≤ i, j ≤ 3, be the control points of a uniform bicubic
B-spline surface patch S(u, v). For any given ε > 0, if

k ≥ � log4(
M

3ε
) �

levels of recursive subdivision are performed on the control points of S(u, v) then
the distance between S(u, v) and the level-k control mesh is smaller than ε where
M is the second order norm of S(u, v) defined in (2).
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3 Subdivision Depth Computation for Extra-Ordinary
Patches

In the following, we will define second order forward difference patterns to be
used for an extra-ordinary patch and derive a recurrence formula for the corre-
sponding second order norm, like the one used for a regular patch in Section 2.

3.1 Second Order Norm and Recurrence Formula

Let Vi, i = 1, 2, ..., 2n + 8, be the control points of an extra-ordinary patch
S(u, v) = S0

0(u, v), with V1 being an extra-ordinary vertex of valence n. The
control points are ordered following J. Stam’s fashion [10] (Figure 3(a)). For
convenience of subsequent reference, we shall call the control mesh of S(u, v)
Π = Π0

0 . By performing a subdividion step on Π , one gets 2n + 17 new vertices
V1

i , i = 1, ..., 2n + 17 (see Figure 3(b)). These control points form four control
point sets Π1

0 , Π1
1 , Π1

2 and Π1
3 , representing control meshes of the subpatches

S1
0(u, v), S1

1(u, v), S1
2(u, v) and S1

3(u, v), respectively (see Figure 3(b)) where
Π1

0 = {V1
i | 1 ≤ i ≤ 2n + 8 }, and the other three control point sets Π1

1 , Π1
2

and Π1
3 are shown in Figure 4. S1

0(u, v) is an extra-ordinary patch but S1
1(u, v),

S1
2(u, v) and S1

3(u, v) are regular patches. Therefore, second order norm similar
to (2) can be defined for S1

1, S1
2 and S1

3.
To define a second order norm for S, one needs to choose appropriate second

order forward differences from Π . For the second order norm to be recursively
defined, second order forward differences that are required in the child control
meshes should also appear in the parent control mesh. For instance, 2V1 −
V4 − V8 and 2V1 − V2 − V6 should be chosen for Π because these patterns
are required for Π1

1 and Π1
3 , respectively. On the other hand, for a recurrence

formula to hold effectively, second order forward differences that are not required
in the child control meshes should not be used in the parent control mesh either..
For instance, one should not choose 2V1 − V2 − V8 for Π because this pattern
is not required in any of Π1

1 , Π1
2 or Π1

3 . Therefore, for those cases that involves
the extra-ordinary point V1 as the center point, one should only consider

2V1 − V2i − V2(i%n+2), 1 ≤ i ≤ n. (5)
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Fig. 3. (a) Ordering of control points of an extra-ordinary patch. (b) Ordering of new
control points (solid dots) after a Catmull-Clark subdivision.
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Fig. 5. (a) Vicinity of the extra-ordinary point. (b) The extended remaining part.

To ensure the boundary of the vicinity of the extra-ordinary point is covered
(Figure 5(a)), one should consider

2V2(i%n+1) − V2i+1 − V2(i%n+1)+1, 1 ≤ i ≤ n. (6)

One also has to consider second order forward differences that cover the extended
remaining part (Figure 5(b)). There are ten of them (actually twelve, but two
of them have been used in (6)). So, totally, 2n + 10 (n + 10 when n = 3) second
order forward differences should be considered for Π and the second order norm
of S, M = M0, is defined as the maximum norm of these 2n + 10 second order
forward differences:

M = max{ { ‖2V1 − V2i − V2(i%n+2)‖ | 1 ≤ i ≤ n } ∪

{ ‖2V2(i%n+1) − V2i+1 − V2(i%n+1)+1‖ | 1 ≤ i ≤ n } ∪

{ ‖ 2V3 − V2 − V2n+8 ‖, ‖ 2V4 − V1 − V2n+7 ‖, ‖ 2V5 − V6 − V2n+6 ‖,

‖ 2V5 − V4 − V2n+3 ‖, ‖ 2V6 − V1 − V2n+4 ‖, ‖ 2V7 − V8 − V2n+5 ‖,

‖ 2V2n+7 − V2n+6 − V2n+8 ‖, ‖ 2V2n+6 − V2n+2 − V2n+7 ‖,

‖ 2V2n+3 − V2n+2 − V2n+4 ‖, ‖ 2V2n+4 − V2n+3 − V2n+5 ‖ } }

(7)
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Following this definition, one can define a similar second order norm, M1, for
the control mesh of S1

0. In general, for any k ≥ 0, we can define second order
norm similar to (7) for Sk

0 and Sk+1
0 . The second order norms of Sk

0 and Sk+1
0

are denoted Mk and Mk+1, respectively. We have the following lemma for Mk

and Mk+1. The proof is shown in the complete version of the paper [4].

Lemma 4. For any k ≥ 0, if Mk represents the second order norm of the extra-
ordinary sub-patch Sk

0 after k Catmull-Clark subdivision steps, then Mk satisfies
the following inequality

Mk+1 ≤

⎧⎪⎪⎨
⎪⎪⎩

2
3Mk, n = 3

0.72Mk, n = 5

(3
4 + 8n−46

4n2 )Mk, n > 5

Actually, the lemma works in a more general sense, i.e., if Mk stands for the
second order norm of the control mesh Mk, instead of Πk

0 , the lemma still works.
The second order norm of Mk is defined as follows: for regions not involving
the extra-ordinary point, use standard second order forward differences; for the
vicinity of the extra-ordinary point, use second order forward differences defined
in (7). The proof is essentially the same.

3.2 Distance Evaluation

To compute the distance between the extra-ordinary patch S(u, v) and the center
face of its control mesh, L(u, v), we need to parameterize the patch S(u, v) first.

Note that by iteratively performing Catmull-Clark subdivision on S(u, v), we
get a sequence of regular patches { Sm

b }, m ≥ 1, b = 1, 2, 3, and a sequence
of extra-ordinary patches { Sm

0 }, m ≥ 1. The extra-ordinary patches converge
to a limit point which is the value of S at (0, 0) [5]. This limit point and the
regular patches { Sm

b }, m ≥ 1, b = 1, 2, 3, form a partition of S. If we use
Ωm

b to represent the parameter space corresponding to Sm
b then { Ωm

b }, m ≥ 1,
b = 1, 2, 3, form a partition of the unit square Ω = [0, 1]×[0, 1] (see Figure 6) with

Ωm
1 = [ 1

2m , 1
2m−1 ] × [0, 1

2m ], Ωm
2 = [ 1

2m , 1
2m−1 ] × [ 1

2m , 1
2m−1 ],

Ωm
3 = [0, 1

2m ] × [ 1
2m , 1

2m−1 ].
(8)
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Ω

Fig. 6. Ω-partition of the unit square
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The parametrization of S(u, v) is done as follows. For any (u, v) ∈ Ω but (u, v) 	=
(0, 0), first find the Ωm

b that contains (u, v). m and b can be computed as follows.

m(u, v) = min{�log 1
2
u�, �log 1

2
v�}

b(u, v) =

⎧⎨
⎩

1, if 2mu ≥ 1 and 2mv ≤ 1
2, if 2mu ≥ 1 and 2mv ≥ 1
3, if 2mu ≤ 1 and 2mv ≥ 1

(9)

Then map this Ωm
b to the unit square with the mapping: (u, v) → (um, vm) where

tm = (2mt)%1 =
{

2mt, if 2mt ≤ 1
2mt − 1, if 2mt > 1 . (10)

The value of S(u, v) is equal to the value of Sm
b at (um, vm), i.e., S(u, v) =

Sm
b (um, vm) . Let Lm

b (u, v) be the bilinear parametrization of the center face of
Sm

b ’s control mesh. Since Sm
b is a regular patch, following Lemma 1, we have

‖Lm
b (u, v) − Sm

b (u, v)‖ ≤ 1
3
Mm

b

where Mm
b is the second order norm of the contol mesh of Sm

b . But the second
order norm of Sm

b is smaller than the second order norm of Mm, Mm. Hence,
the above inequality can be written as

‖Lm
b (u, v) − Sm

b (u, v)‖ ≤ 1
3
Mm. (11)

So the maximum distance between the original extra-ordinary mesh L(u, v) and
the patch S(u, v) can be written as

‖ L(u, v) − S(u, v) ‖ = ‖ L(u, v) − Lm
b (um, vm) + Lm

b (um, vm) − S(u, v) ‖

≤ ‖ L(u, v) − Lm
b (um, vm) ‖ + ‖ Lm

b (um, vm) − Sm
b (um, vm) ‖

(12)
where 0 ≤ u, v ≤ 1 and um and vm are defined in (10). Since the second term
on the right hand side can be estimated using (11), the only thing we need to
work with is ‖L(u, v) − Lm

b (um, vm) ‖.
It is easy to see that if (u, v) ∈ Ωm

b then (u, v) ∈ Ωk
0 for any 0 ≤ k < m where

Ωk
0 = [0, 1

2k ] × [0, 1
2k ]. Ωk

0 corresponds to the subpatch Sk
0 . This means that

(2ku, 2kv) is within the parameter space of Sk
0 for 0 ≤ k < m, i.e., (2ku, 2kv) =

(uk, vk) where uk and vk are defined in (10). Consequently, we can consider
Lk

0(uk, vk) for 0 ≤ k < m where Lk
0 is the bilinear parametrization of the center

face of the control mesh of Sk
0 (with the understanding that L0

0 = L). What we
want to do here is to write the first term on the right hand side of (12) as

L(u, v) − Lm
b (um, vm) = L0

0(u, v) − L1
0(u1, v1) + L1

0(u1, v1) − L2
0(u2, v2)

+ L2
0(u2, v2) − L3

0(u3, v3) + L3
0(u3, v3) − L4

0(u4, v4)

+ · · · + Lm−1
0 (um−1, vm−1) − Lm

b (um, vm)

(13)
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and get an estimate for its norm by estimating the norm of each consecutive pair
on the right hand side. We have the following two lemmas. The proofs of these
lemmas are shown in the complete version of the paper [4].

Lemma 5. If (u, v) ∈ Ωm
b where b and m are defined in (9) then for any

0 ≤ k < m − 1 we have

‖ Lk
0(uk, vk) − Lk+1

0 (uk+1, vk+1) ‖ ≤ 1
min{ n, 8 }Mk

where Mk is the second order norm of Mk and L0
0 = L.

Lemma 6. If (u, v) ∈ Ωm
b where b and m are defined in (9) then we have

‖ Lm−1
0 (um−1, vm−1) − Lm

b (um, vm) ‖ ≤
{ 1

4Mm−1, if b = 2

1
8Mm−1, if b = 1 or 3

where Mm−1 is the second order norm of Mm−1.

By applying Lemmas 5 and 6 on (13) and then using (11) on (12), we have the
following lemma. Proof of this lemma is shown in [4].

Lemma 7. The maximum of ‖ L(u, v)−S(u, v) ‖ satisfies the following inequality

‖ L(u, v) − S(u, v) ‖ ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M0, n = 3

5
7M0, n = 5

4n
n2−8n+46M0, 5 < n ≤ 8

n2

4(n2−8n+46)M0, n > 8

(14)

where M = M0 is the second order norm of the extra-ordinary patch S(u, v).

Since the coefficient in the third case (4n/(n2 − 8n + 46)) is smaller than the
coefficient in the second case (5/7), we can combine these two cases into one
case (5 ≤ n ≤ 8) to make the above expression (14) simpler.

3.3 Subdivision Depth Computation

Lemma 7 is important because it not only provides us with a second order norm
based simple mechanism to estimate the distance between an extra-ordinary
surface patch and its control mesh, it also allows us to estimate the distance
between a level-k control mesh and the surface patch for any k > 0. This is
because the distance between a level-k control mesh and the surface patch is
dominated by the distance between the level-k extra-ordinary subpatch and the
corresponding control mesh which, accoriding to Lemma 7, is
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‖ Lk(u, v) − S(u, v) ‖ ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mk, n = 3

0.72Mk, 5 ≤ n ≤ 8

n2

4(n2−8n+46)Mk, n > 8

where Mk is the second order norm of S(u, v)’s level-k control mesh, Mk (see
the remark at the end of Section 3.1 for the definition of Mk). By combining the
above result with Lemma 4, we have the following subdivision depth computa-
tion theorem for extra-ordinary surface patches.

Theorem 8. Given an extra-ordinary surface patch S(u, v) and an error toler-
ance ε, if k levels of subdivisions are iteratively performed on the control mesh
of S(u, v), where

k =
⌈
logw

M

zε

⌉

with M being the second order norm of S(u, v) defined in (7),

w =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
2 , n = 3

25
18 , n = 5

4n2

3n2+8n−46 , n > 5

and z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, n = 3

25
18 , 5 ≤ n ≤ 8

2(n2−8n+46)
n2 , n > 8

then the distance between S(u, v) and level-k control mesh is smaller than ε.

(a) (b) (c) (d)

Fig. 7. Examples: (a) an extra-ordinary CCSS mesh face of valence 3, (b) limit surface
of the control mesh shown in (a), (c) an extra-ordinary CCSS mesh face of valence 5,
(d) limit surface of the control mesh shown in (c)
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4 Examples

Some examples of the presented distance evaluation and subdivision depth com-
putation techniques are given in this section. In Figures 7(a) and 7(c), the dis-
tances between the blue mesh faces of the control meshes and the corresponding
limit surface patches are 0.16 and 0.81, respectively. For the blue mesh face
shown in Figure 7(a), the subdivision depths for the error tolerances 0.1, 0..01,
0.001, and 0.0001 are 2, 7, 13, and 19, respectively.. For the blue mesh face shown
in Figure 7(c), the subdivision depths for the error tolerances 0.1, 0.01, 0.001,
and 0.0001 are 7, 14, 21, and 28, respectively. Note that in the previous approach
[3], the subdivision depths for these error tolerances are 9, 24, 40, and 56, re-
spectively. Hence, the new approach presented in this paper indeed improves the
previous, first order norm based approach.

5 Conclusions

A new subdivision depth computation technique for extra-ordinary CCSS patches
is presented. The new technique computes the subdivision depth based on norms
of the second order forward differences, not the first order forward differences, of
the patch’s control points. Hence, the computed subdivision depth reflects the cur-
vature distribution of the extra-ordinary patch, not its dimension. Our result also
points out that as long as the design objective can be achieved, one should try
to use extra-ordinary vertices with smaller valence because, according to Theo-
rem 8, smaller valence gives higher convergence rate and, consequently, smaller
subdivision depth for the same precision.

Although the new technique improves the previous approach [3], it is not clear
if the new approach is optimum for extra-ordinary CCSS patches. This will be
a study direction in the future.
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