Adaptive Rendering of Catmull-Clark Subdivision Surfaces

Shuhua Lai and Fuhua (Frank) Cheng
Graphics & Geometric Modeling Lab, Department of Computer Science
University of Kentucky
Lexington, Kentucky 40506-0046

Abstract

A new adaptive rendering method for Catmull-Clark
subdivision surfaces is presented. The new method
is based on direct evaluation of the limit surface to
generate an inscribed polyhedron of the limit surface.
The new method can precisely measure error for ev-
ery point of the limit surface. Hence, it has complete
control of the accuracy of the rendering result. Cracks
are avoided by using a recursive color marking process
to ensure that adjacent patches or subpatches use the
same limit surface points in the construction of the
shared boundary. The new method performs limit sur-
face evaluation only at points that are needed for the
final rendering process. Therefore it is both computa-
tion and memory efficient,.

CR Categories: 1.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modelling - curve, sur-
face, solid and object representations;

Keywords: subdivision, Catmull-Clark surfaces,
adaptive rendering, surface evaluation

1 Introduction

There are two possible approaches for the adaptive
tessellation of a subdivision surface. One is a mesh-
refinement-based (MRB) approach. It approximates
the limit surface by adaptively refining the control
mesh of the surface. The resulting mesh usually does
not interpolate the limit surface. The other one is
a surface-evaluation-based (SEB) approach. This ap-
proach approximates the limit surface by generating
an inscribed polyhedron of the limit surface, with ver-
tices of the polyhedron taken (evaluated) adaptively
from the limit surface. The MRB approach needs a
subdivision scheme, such as the Catmull-Clark method
or the Doo-Sabin method, to refine the input mesh.
Most, methods proposed in the literature for adap-
tive tessellation of subdivision surfaces belong to this
category. The second approach needs a parametriza-
tion/evaluation method for the limit surface. With

the availability of direct evaluation methods of subdivi-
sion surfaces [2, 3, 4, 6], the second approach could be
more appealing for adaptive tessellation of subdivision
surface because of its simplicity in nature. Currently
there is only one paper published in this category [9].
This paper works parametrization of Loop subdivision
scheme that reproduces linear functions [16]. Nothing
has been done for parametrization of Catmull-Clark
subdivision scheme [2, 6] yet.

In this paper we will present an SEB approach for
adaptive tessellation of Catmull-Clark subdivision sur-
faces. The new method can precisely measure error for
every point of the limit surface. Hence, it has com-
plete control of the accuracy of the rendering result.
Cracks are avoided by using a recursive color marking
process to ensure that adjacent patches or subpatches
use the same limit surface points in the construction of
the shared boundary. The new method performs limit
surface evaluation only at points that are needed for
the final rendering process. Therefore it is both com-
putation and memory efficient.

The remaining part of the paper is arranged as fol-
lows. A brief review of previous works related to this
one is given in Section 2. A description of the basic idea
of our adaptive rendering technique is given in Section
3. The issue of crack elimination is discussed in Sec-
tion 4. Algorithms of our technique are presented in
Seciton 5. Test results are shown in Section 6. The
concluding remarks are given in Section 7.

2 Previous Work

2.1 Catmull-Clark Subdivision
faces

Sur-

Given a control mesh, a Catmull-Clark subdivision sur-
face (CCSS) is generated by iteratively refining (sub-
dividing) the control mesh [1] to form new control
meshes. The subdividing process consists of defining
new vertices (face points, edge points and vertex points)
and connecting the new vertices to form new edges and

Figure 1: Control vertices of an extra-ordinary patch
and their labeling.

faces of a new control mesh. A CCSS is the limit sur-
face of the sequence of refined control meshes. The
limit surface is called a subdivision surface because the
mesh refining process is a generalization of the uniform
B-spline surface subdivision technique. The wvalence of
a mesh vertex is the number of mesh edges adjacent to
the vertex. A mesh vertex is called an extra-ordinary
vertex if its valence is different from four. Vertex V
in Figure 1 is an extra-ordinary vertex of valence five.
A mesh face with an extra-ordinary vertex is called
an extra-ordinary face. ' The walance of an extra-
ordinary face is the valence of its extra-ordinary ver-
tex. Given an extra-ordinary face, if the valence of its
extra-ordinary vertex is n, then the surface patch cor-
responding to this extra-ordinary face is influenced by
2n + 8 control vertices. The control vertices shown in
Figure 1 are the ones that influence the patch marked
with an “S”. Recent work [2, 3, 4, 6] shows that any
point in the limit surface of a CCSS can be exactly and
directly evaluated from its 2n+8 control points. Hence
control mesh subdivision is not absolutely necessary for
the rendering of a CCSS.

2.2 Adaptive Tessellation

A number of adaptive tessellation methods for subdi-
vision surfaces have been proposed [5, 7, 8, 9, 12, 13].
Most, of them are mesh refinement based, i.e., approxi-
mating the limit surface by adaptively refining the con-
trol mesh. This approach requires the assignment of a
subdivision depth to each region of the surface first.
In [5], a subdivision depth is calculated for each patch
of the given Catmull-Clark surface with respect to a
given error tolerance €. In [7], a subdivision depth is
estimated for each vertex of the given Catmull-Clark
surface by considering factors such as curvature, visi-
bility, membership to the silhouette, and projected size

THere, without loss of generality, we assume each patch has
at most one extra-ordinary vertex

of the patch. The approach used in [5] is error control-
lable. An error controllable approach for Loop surface
is proposed in [9], which calculates a subdivision depth
for each patch of a Loop surface by estimating the dis-
tance between two bounding linear functions for each
component of the 3D representation.

Several other adaptive tessellation schemes have
been presented as well [8, 13, 12]. In [8], two methods
of adaptive tessellation for triangular meshes are pro-
posed. The adaptive tessellation process for each patch
is based on angles between its normal and normals of
adjacent faces. A set of new error metrics tailored to
the particular needs of surfaces with sharp creases is
introduced in [12].

In addition to various adaptive tessellation schemes,
there are also applications of these techniques. D. Rose
et al. used adaptive tessellation method to render ter-
rain [15] and K. Miiller et al. combined ray tracing
with adaptive subdivision surfaces to generate realistic
scenes [11]. Adaptive tessellation is such an important
technique that an API has been designed for its general
usage [14]. Actually hardware implementation of this
technique has been reported recently as well [10].

A problem with the mesh-refinement-based, adap-
tive tessellation techniques is the so called gap-
prevention requirement. Because the number of new
vertices generated on each boundary of the control
mesh depends on the subdivision depth, gaps (or,
cracks) could occur between the control meshes of adja-
cent patches if these patches are assigned different sub-
division depths. Hence, each mesh-refinement-based
adaptive tessellation method needs some special mech-
anism to eliminate gaps. This is usually done by per-
forming additional subdivision or splitting steps on the
patch with lower subdivision depth. As a result, many
unnecessary polygons are generated in the tessellation
process. In this paper, we will adaptively tessellate a
subdivision surface by taking points from the limit sur-
face to form an inscribed polyhedron of the limit sur-
face, instead of refining the control mesh. Our method
simplifies the process of gap detecting and elimination.
It does not need to perform extra or unnecessary eval-
uations either.

2.3 Evaluation of a CCSS Patch

Several approaches [2, 3, 4, 6] have been presented for
exact evaluation of an extraordinary patch at any pa-
rameter point (u,v). In this paper, we will follow the
parametrization technique presented in [6]. This tech-
nique is numerically stable, employs less eigen basis
functions, and can be used to evaluate both position
and normal of any point in the limit surface exactly

and explicitly. Some related results of [6] are summa-
rized below.

The parametrization/evaluation approach of [6] is
presented for general Catmull-Clark subdivision sur-
face. That is, the new vertex point V' of V after one
subdivision is computed as follows:

i=1 i=1
where «,, B, and 7, are positive numbers and «,, +
Bn + vn = 1. In a general Catmull-Clark subdivision
surface, new face points and edge points are computed
the same way as in an ordinary Catmull-Clark sub-
division surface [1]. The parametrization/evaluation
approach of [6] is based on an Q — partition of the pa-
rameter space [2, 6]. After a detoured subdivision path
and some specific transforms [6], every point in the pa-
rameter space of a patch can be explicitly and precisely
evaluated as follows.

n+5

S(u,v) =WTK™ " A" M ; G (1)

i=0

where n is the valance of the extraordinary patch, 2
W is a vector containing the 16 B-spline power basis
functions:

WT(u,v) = 2 2,3 ,2 2,3

[1,u,v,u* uv,v?, u®, u?v, uv?, V3,

w3, u?v?, uvd udv? uo? udv?] |

with 0 < wu,v <1, K is a diagonal matrix:
K = Diag(1,2,2,4,4,4,8,8,8,8,16, 16,16, 32,32, 64)

3

and m and b are defined as follows:

m(u,v) = min{[logiul, [logiv]} ,

1, if 2"u>1 and 2™v <1
b(u,v) =< 2, if 2™u>1 and 2™v >1
3, if 2Mu <1 and 2Mmv > 1,

Aj, 0 < j <n+5, are eigenvalues of the Catmull-Clark
subdivision metrix and M, ;, 1 <5 <3,0< 5 <n+3,
are matrices of dimension 16 x (2n + 8). A; and My ;
are independent of (u,v) and their exact expressions
are given in [6]. G is the vector of control points (See
Fig. 1 for their labeling):

G: [V7E1:"' 7En:F1:"' :Fn:II:"' :17]

One can compute the derivatives of S(u,v) to any
order by differentiating W (u,v) in Eq. (1) accordingly.
For example,

0 W o SR
£S(u,v):(E)TK DNATIM; G (2)
j=0

2Eq. (1) works for regular patches as well, i.e., when n = 4.

/TN

(a) Circumscribed (b) Inscribed

Figure 2: Inscribed and Circumscribed Approximation.

With the explicit expression of S(u,v) and its par-
tial derivatives, one can easily get the limit point of an
extraordinary vertex in a general Catmull Clark sub-
division surface:

S(0,0) =[1,0,---,0] - My pny1 -G (3)
and the first derivatives:

Du(olo): [07170:07"' 70]'Mb,2'G
Dv(olo): [07071:07"' 70]'Mb2'G

’

where D, and D, are the direction vectors of w
and w, respectively. The normal at (0,0) is the

cross product of D, and D,.

3 Basic Idea

3.1 Inscribed Approximation

One way to approximate a curve (surface) is to use
its control polygon (mesh) as the approximating poly-
line (polyhedron). For instance, in Figure 2(a), at the
top are a cubic Bézier curve and its control polygon.
For a better approximation, we can refine the control
polygon using midpoint subdivision. The solid polyline
at the bottom of Fig. 2(a) is the approximating con-
trol polygon after one refinement. This method relies
on performing iterative refinement of the control poly-
gon or control mesh to approximate the limit curve or
surface. Because this method approximates the limit
shape from control polygon or control mesh “outside”
(more or less) the limit shape, we call this method cir-
cumscribed approrimation.

Another possible method is inscribed approximation.
Instead of approximating the limit curve (surface) by
performing subdivision on its control polygon (mesh),
one can approximate the limit curve (surface) by in-
scribed polygons (polyhedra) whose vertices are taken

from the limit curve (surface) directly. The easiest ap-
proach to get vertices of the inscribed polygons (poly-
hedra) is to perform uniform midpoint subdivision on
the parameter space and use the evaluated vertices of
the resulting subsegments (subpatches) as vertices of
the inscribed polylines (polyhedra). For instance, in
Figure 2(b), at the top are a cubic Bézier curve and
its approximating polygon with vertices evaluated at
parameter points 0, 1/2 and 1. Similarily, the solid
polygon at the bottom of Figure 2(b) is an approximat-
ing polygon with vertices evaluated at five parameter
points.

Because inscribed approximation uses points di-
rectly located on the limit curve or surface, in most
cases, it has faster convergent rate than the circum-
scribed appromimation. As one can see from Fig. 2
that the inscribed polygon at the bottom of Fig. 2(b)
is closer to the limit curve than the circumscribed poly-
gon shown at the bottom of Fig. 2(a) even though the
inscribed polygon actually has less segments than the
circumscribed polygon.

However, the problem with both approaches is that,
with uniform subdivision, no matter it is performed on
the control mesh or the parameter space, one would
get unnecessarily small and dense polygons for surface
patches that are already flat enough and, consequently,
slow down the rendering process. To speed up the
rendering process, a flat surface patch should not be
tessellated as densely as a surface patch with big cur-
vature. The adaptive tessellation process of a surface
patch should be performed based on the flatness of the
patch. This leads to our adaptive inscribed approxi-
mation.

3.2 Adaptive Inscribed Approximation

For a patch of S(u,v) defined on u; < u < us and
v1 < v < vy, we try to approximate it with the quadri-
lateral formed by its four vertices Vi = S(u1,v1),
V2 == S(UQ,U1)7 V3 = S(UQ7’112) and V4 = S(ul,'l)g). If
the distance (to be defined below) between the patch
and its corresponding quadrilateral is small enough,
then the patch is considered flat enough and will be
(for now) replaced with the corresponding quadrilat-
eral in the rendering process. Otherwise, we perform a
midpoint subdivision on the parameter space by setting

U1 + U

V1 + Vo
U1s = ——— and vy =
2 2

to get four subpatches: [u1,u12] X [v1,v12], [u12,us] X
[v1,v12], [u12, us] X [v12, va], [u1, u12] X [v12, V2], and re-
peat the flatness testing process on each of the sub-
patches. The process is recursively repeated until the

distance between all the subpatches and their corre-
sponding quadrilaterals are small enough. The vertices
of the resulting subpatches are then used as vertices of
the inscribed polyhedron of the limit surface. For in-
stance, if the four rectangles in Figure 3(a) are the pa-
rameter spaces of four adjacent patches of S(u,v), and
if the rectangles shown in Figure 3(b) are the parame-
ter spaces of the resulting subpatches when the above
flatness testing process stops, then the limit surface
will be evaluated at the points marked with small solid
circles to form vertices of the inscribed polyhedron of
the limit surface.

(@) (b)

Figure 3: Basic idea of the construction of an inscribed
polyhedron.

In the above flatness testing process, to measure
the difference between a patch (or subpatch) and its
corresponding quadrilateral, we need to parametrize
the quadrilateral as well. The quadrilateral can be
parametrized using a simple bilinear interpolation, as
follows:

Qu,v) = = Vit o —h V)

Ug — U] Ug — Ul (4)

SR ET TR VTR S|

U2 —U1 ‘U2 U] u2—uy

where u; < u < wus, v1 < v < wvs. The difference

between the patch (or subpatch) and the corresponding
quadrilateral at (u,v) is defined as

| Qu,v) — S(u,v) ||

(Q(um) - S(u U)) ’ (Q(um) - S(um))T
(5)

where || - || is the second norm and A7 is the transpose

of A. The distance between the patch (or subpatch)

and the corresponding quadrilateral is the maximum

of all the differences:

D = max{ \/d(u,v) | (u,v) € [u1,uz2] X [v1,v2]}.

To measure the distance between a patch (or subpatch)
and the corresponding quadrilateral, we only need to
measure the norms of all local minima and maxima
of d(u,v). Note that Q(u,v) and S(u,v) are both
C'-continuous, and d(V1), d(Vs), d(V3) and d(Vy)

d(u,v) =

m=2

m=3
=l

]
‘L§¥ Extra-ordinary subpatch
Extra—ordinary point

Figure 4: Partitioning of the unit square.

are equal to 0. Therefore, by Mean Value Theorem,
the local minima and maxima must lie either inside
[u1,us2] X [v1,v2] or on the four boundary curves. In
other words, they must satisfy at least one of the fol-
lowing three conditions:

ad(u,v) _
“ou =0

U =1v1 Or U = Vs
w1 < u < U

3(15311.,1)) -0
U=y Or U= Uy (6)

v < v < Vs

Od(u,v)
i) _ ¢
81}7 =0

(u,v) € (u1,us) X (v1,v2)

For a patch (or subpatch) that is not adjacent to an
extraordinary point (i.e., (u1,v1) # (0,0)), m is fixed
and known (m(u,v) = min{[logiu], [logiv]}). Hence
Eq. (6) can be solved explicitly. With the valid solu-
tions, we can find the difference for each of them using
Eq. (5). Suppose the one with the biggest difference
is (4, 0). Then (a,0) is also the point with the biggest
distance between the patch (or subpatch) and its cor-
responding quadrilateral. The patch (or subpatch) is
said to be flat enough if

D=+d(a o) <e (7)

where € is a given error tolerance. In such a case, the
patch (or subpatch) is replaced with the corresponding
quadrilateral in the rendering process. If a patch (or
subpatch) is not flat enough yet, i.e., if Eq. (7) does
not hold, we perform a midpoint subdivision on the
patch (or subpatch) to get four new subpatches and
repeat the flatness testing process for each of the new
subpatches. This process is recursively repeated until
all the subpatches satisfy Eq. (7).

As

A1

Figure 5: Crack prevention.

For a patch (or subpatch) that is adjacent to an ex-
traordinary point (i.e. (ui,v;) = (0,0) in Eq. (6)),
m is not fixed and m tends to oo (see Figure 4). As
a result, Eq. (6) can not be solved explicitly. One
way to resolve this problem is to use nonlinear numer-
ical method to solve these equations. But numerical
approach cannot guarantee the error is less than € ev-
erywhere. For precise error control, a better choice
is needed. In the following, an alternative method is
given for that purpose.

Eq. (3) shows that S(u,v) and Q(u,v) both con-
verge to S(0,0). Hence, for any given error tolerance e,
there exists an integer m. such that if m > m,, then the
difference between S(u,v) and S(0,0) is smaller than
€/2 for any (u,v) € [0,1/2™] x [0,1/2™], and so is the
difference between Q(u,v) and S(0,0). Consequently,
when (u,v) € [0,1/2™] x [0,1/2™], the difference be-
tween S(u,v) and Q(u,v) is smaller than €. The value
of m., in most of the cases, is smaller than 12. For other
regions of the unit square with [logi ua| < m < m, eq.
(6) can be used to find the difference between S(u,v)
and Q(u,v) (see Figure 4). Therefore, by combining
all these differences, we have the distance between the
given extra-ordinary patch (or subpatch) and the corre-
sponding quadrilateral. If this distance is smaller than
e, we consider the given extra-ordinary patch (or sub-
patch) to be flat, and use the corresponding quadrilat-
eral to replace the extra-ordinary patch (or subpatch)
in the rendering process. Otherwise, repeatedly subdi-
vide the patch (or subpatch) and perform flatness test-
ing on the resulting subpatches until all the subpatches
satisfy Eq. (7).

4 Crack Elimination

Due to the fact that adjacent patches might be approx-
imated by quadrilaterals corresponding to subpatches
from different levels of the midpoint subdivision pro-
cess, cracks could occur between adjacent patches. For

instance, in Figure 3, patch 2 is approximated by one
quadrilateral but patch 4 is approximated by 4 quadri-
laterals and patch 1 is approximated by 7 quadrilat-
erals. Consider the boundary shared by patch 1 and
patch 2. On the patch 2 side, that boundary is a line
segment defined by two vertices : S(D) and S(G). But
on the patch 1 side, the boundary is a polyline defined
by four vertices : S(D), S(E), S(F), and S(G). They
would not coincide unless S(E) and S(F) lie on the line
segment defined by S(D) and S(G). But that usually
is not the case. Hence, cracks would appear between
patch 1 and patch 2.

Fortunately Cracks can be eliminated simply by re-
placing each boundary of a patch or subpatch with
the one that contains all the evaluated points for
that boundary. For example, in Figure 5, all the
dashed lines should be replaced with the correspond-
ing polylines. In particular, boundary AsAj of patch
A;A5A5Ag should be replaced with the polyline
A>C4B4A;5. As a result, polygon A;jAsAsAg is re-
placed with polygon A;A>;C4B4sA5As in the render-
ing process. For rendering purpose this is fine be-
cause graphics systems like OpenGL can handle poly-
gons with non-co-planar vertices and polygons with any
number of vertices. The points shown in Figure 5 are
points of the limit surface, not points in the parameter
space of the limit surface.

A potential problem with this process is the new
polygons generated by the crack elimination algorithm
might not satisfy the flatness requirement. To ensure
the flatness requirement is satisfied everywhere when
the above crack elimination method is used, we need
to change the test condition in Eq. (7) to the following
one:

Vd (a, v) ++/d (i, 9) <e (8)

v
where (4, 0) and (@, v) are solutions of Eq. (6) and they
satisfy the following conditions:

e Among all the solutions of Eq. (6) that are located
on one side of Q(u,v), i.e. solutions that satisfy
Q(u,v) >0, d(4,0) is the biggest.

e Among all the solutions of Eq. (6) that are located
on the other side of Q(u,v), i.e. solutions that

3

satisfy Q(u,v) < 0, d(@,v) is the biggest.

From the definition of (@, %) and (u,v), we can see that
satisfying Eq. (8) means that the patch being tested is
located between two quadrilaterals that are e away.
Note that all the evaluated points lie on the limit
surface. Hence, in Fig. 5, points Ay, C4, B4 and Aj of
patch A A3z A4 A5 are also points of patch A; A, A5 Ag.
With the new test condition in Eq. (8), we know that a
patch or subpatch is flat enough if it is located between

two quadrilaterals that are ¢ away. Because points
A5, C4, By and Aj are on the limit surface, they are
located between two quadrilaterals that are e away. So
is the polygon A; AsC4B4sA5Aq. Now the patch (or
subpatch) and its approximating polygon are both lo-
cated inside two quadrilaterals that are e away. Hence
the overall error between the patch (or subpatch) and
its approximating polygon is guaranteed to be smaller
than e.

In previous methods for adaptive tessellation of sub-
division surfaces [7, 5, 8, 12], the most difficult part is
crack prevention. Yet in our method, this part is the
simplest part to handle and implement. The resulting
surface is error controllable and guaranteed to be crack
free.

5 Algorithms

In this section, we discuss the important steps of the
adaptive tessellation process and present the corre-
sponding algorithms.

5.1 Global Index ID

All currently available subdivision surface parametriza-
tion and evaluation techniques are patch based [2, 4, 6].
Hence, no matter which method is used in the adaptive
tessellation process, a patch, from its own (local) struc-
ture, cannot see vertices generated by adjacent patches,
even the vertices are generated on a common bound-
ary. For example, in Figure 5, vertices C4 and B4 are
on the shared boundary of patches A;AsA5Ag and
AsA3A A5, But patch AjAs A5 Ag cannot see these
vertices from its own structure because these vertices
are not generated by this patch. To make activities
of adjacent patches visible to each other and, conse-
quently, make crack detection unnecessary, one should
assign a global index ID to each evaluated vertex so
that

e all evaluated vertices with the same 3D position
have the same index ID;

e the index ID’s are sorted in v and then in u, i.e., if
(wi,v;) > (uj,v;), then ID; > ID;, unless ID; or
ID; has been used in previous patch evaluation.

With a global index ID, crack prevention is not a prob-
lem even with a patch based approach. Actually, sub-
sequent processing can all be done with a patch based
approach and still performed efficiently. For example,
in Figure 5, patch A;A>A5Ag can see both C4 and
B4 even though they are not evaluated by this patch.
In the subsequent rendering process, the patch simply

output all the marked vertices (to be defined below) on
its boundary that it can see to form a polygon for the
rendering purpose, i.e., AjA>,C4BsA5Ag.

5.2 Adaptive Marking

The purpose of adaptive marking is to mark those
points in wuv space where the limit surface should
be evaluated. With the help of the global index ID,
this step can be done on an individual patch basis.
Initially, all (u,v) points are marked white. If surface
evaluation should be performed at a point and the
resulting vertex is needed in the rendering process,
then that point is marked in black. This process
can be easily implemented as a recursive function. A
pseudo code for this step is given below.

AdaptiveMarking(P, u1, usg, v1, v2)

1. Evaluate(P, u1, us, v1, v2),

2. AssignGloballD(P, u1, us, v1, v2),

3. if (FlatEnough(P, u1, us, v1, v3))

4. MarkBlack(P, u1, us, v1, vs)

5. else

6. U2 = (u1 + UQ)/2

7. V12 = ('Ul -|—’l)2)/2

8. AdaptiveMarking(P, u1, u12, v1, v12)
9. AdaptiveMarking(P, uja, ua, v1, v12)
10. AdaptiveMarking(P, uja, ua, vi2, v2)
11. AdaptiveMarking (P, u1, 12, v12, v2)

This routine adaptively marks points in the param-
eter space of patch P. Function ‘Evaluate’ evaluates
limit surface at the four corners of patch or subpatch
P defined on [u1,us] X [v1,vs]. Function ‘FlatEnough’
uses the method given in section 3 and Eq. (7) to tell
if a patch or subpatch is flat enough. Function ‘Mark-
Black’ marks the four corners of patch or subpatch P
defined on [uy,us] X [v1,vs] in black. All the marked
corner points will be used in the rendering process.

5.3 Adaptive Rendering a Single Patch

The purpose of this step is to render the limit surface
with as few polygons as possible, while preventing the
occurrence of any cracks. Note that the limit surface
will be evaluated only at the points marked in black,
and the resulting vertices are the only vertices that
will be used in the rendering process. To avoid cracks,
each marked points must be rendered properly. Hence
special care must be taken on adjacent patches or
subpatches. With the help of adaptive marking, this
process can easily be implemented as a recursive func-
tion as well. A pseudo code for this step is given below.

AdaptiveRendering(P, u1, us, v1, v2)

if (NoMarkedPointInside(P, u1, ua, v1, v2))
RenderPolygon (P, uy, us, v1, v2)

else
U1 = (Ul + 112)/2
v12 = (U1 + v2)/2
AdaptiveRendering(P, u1, u12, v1, v12)
AdaptiveRendering(P, w12, ua, vy, v12)
AdaptiveRendering(P, w12, ua, vi2, v2)
AdaptiveRendering (P,)

© N3Ok W=

Uy, U2, V12, U2

This routine adaptively renders marked points in
patch or subpatch P. Function ‘NoMarkedPointInside’
tests if none of the points inside [u1,us] X [v1,v2],
excluding the boundary points, are marked. If all the
interior points are in white (i.e. not marked), it returns
TRUE. Function ‘RenderPolygon’ is defined as follows.

RenderPolygon(P, u1, ua, v1, va)
glBegin(RenderModel)
Output all the marked points between
(uy,v1) = (ua,v1)
U2, U2

1
2
3
4)~ (2, v2)
5 u27'U2) — (Ul,'l)g)
6) = ()
7

6 Test Results

The proposed approach has been implemented in C++
using OpenGL as the supporting graphics system on
the Windows platform. Some of the tested results are
shown in Figure 6. We also summarize those tested re-
sults in Table 1. The column underneath A|U in Table
1 indicates the type of tessellation technique (Adaptive
or Uniform) used in the rendering process. The term
A/U ratio means the ratio of number of polygons in
an adaptively tessellated CCSS to its counter part in
a uniformly tessellated CCSS with the same accuracy.
From Table 1 we can see that all the adaptively tes-
sellated CCSS’s have relatively low A/U ratios. The
error in the last column is absolute error. We can eas-
ily see that, for the same model, the smaller the error,
the lower the A/U ratio. For example, Fig. 6(g) has
lower A/U ratio than Fig. 6(h) and Fig. 6(i). The
same holds for Fig. 6(1) and Fig. 6(m). An interesting
fact is that Fig. 6(f) uses many more polygons than
Fig. 6(g) does, while the former is less accurate than
the latter. This shows the presented adaptive tessella-
tion method is capable of providing a higher accuracy
with less polygons. However, for different models, com-
paring their absolute errors might not make practical

sense because absolute error is not Affine transforma-
tion invariant.

Table 1: Extra information of Fig. 6

Figure A|U | polygons | A/U Ratio | Error
Fig. 6(a) | U | 20480 100.00% | 0.1
Fig. 6(b) | A 4688 22.80% | 0.1
Fig. 6(c) | A 8017 8.26% | 0.015
Fig. 6(f) U 6912 100.00% | 0.105
Fig. 6(g) | A 2068 7.48% | 0.050
Fig. 6(b) | A 1432 20.72% | 0.105
Fig. 6() | A 112 23.84% | 0.250
Fig. 6(k) | U | 22656 100.00% | 1.0
Fig. 6(0) | A 3048 13.45% | 1.0
Fig. 6(m) | A 2238 3951% | 15
Fig. 6(o) A 6654 28.15% | 0.0003
Fig. 6(p) | U | 17088 100.00% | 0.02
Fig. 6(q) | A | 11544 422% | 0.01

7 Summary

An adaptive rendering method based on inscribed ap-
proximation for general Catmull-Clark subdivision sur-
faces is presented. The new method only evaluates
those limit surface points that are needed in the fi-
nal rendering process, and it takes almost no effort for
the new method to eliminate cracks in the resulting
inscribed polyhedron of the limit surface. Hence the
new mthod is both computation efficient and memory
efficient.

Currently, all the methods for adaptive rendering
work on a patch by patch basis. One of our future
works is to take the whole surface into consideration,
so that not only the inner-patch redundancy, but the
inter-patch redundancy, can be eliminated as well.

Acknowledgement. Data set for Fig. 6(o) was down-
loaded from the following web site
http://graphics.cs.uiuc.edu/~garland /research /quadrics.html.
The package gslim was used to reduce the number of
faces in this model to 500.

References

[1] Catmull E, Clark J. Recursively generated B-spline
surfaces on arbitrary topological meshes, Computer-
Aided Design, 1978, 10(6):350-355.

[2] Stam J, Exact Evaluation of Catmull-Clark Subdivi-
sion Surfaces at Arbitrary Parameter Values, Proceed-
ings of SIGGRAPH 1998:395-404.

3]
(4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Stam J, Evaluation of Loop Subdivision Surfaces, SIG-
GRAPH’99 Course Notes, 1999.

Zorin D, Kristjansson D, Evaluation of Piecewise
Smooth Subdivision Surfaces, The Visual Computer,
2002, 18(5/6):299-315.

Fuhua (Frank) Cheng and Junhai Yong, Adaptive
Subdivision of Catmull-Clark Subdivision Surfaces,
Computer-Aided Design & Applications 2,1-4, 2005.
Shuhua Lai and Fuhua (Frank) Cheng, Parametriza-
tion of General Catmull Clark Subdivision
Surfaces and its Application, submitted.
www.cs.uky.edu/~cheng/PUBL/para.pdf.

V. Settgast, K. Miiller, Christoph Fiinfzig et.al.,
Adaptive Tesselation of Subdivision Surfaces, In Com-
puters €& Graphics, 2004, pp:73-78.

A. Amresh, G. Farin and A. Razdan, Adaptive Sub-
division Schemes for Triangular Meshes, In Hierarchi-
cal and Geometric Methods in Scientific Visualization,
Springer-Verlag, 2002 pp:319-327.

Xiaobin Wu and Jorg Peters, An Accurate Error Mea-
sure for Adaptive Subdivision Surfaces, In Shape Mod-
eling International, 2005

M. Bo, M. Amor, M. Doggett, et.al., Hard-
ware Support for Adaptive Subdivision Surface
Rendering, In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics
hardware 2001, pp:33-40.

K. Miiller, T. Techmann and D. Fellner, Adaptive Ray
Tracing of Subdivision Surfaces Computer Graphics
Forum Vol 22, Issue 3 (Sept 2003).
Jordan Smith and
Vertex-Centered Adaptive
www.cs.berkeley.edu/~jordans/pubs/vertexcentered.pdf.

Carlo Séquin,

Subdivision,

T. Isenberg, K. Hartmann and H. Konig. Interest
Value Driven Adaptive Subdivision, In Simulation und
Visualisterung, March 6-7, 2003, Magdeburg, Ger-
many.

A. Sovakar and Leif Kobbelt, API Design for adaptive
subdivision schemes. 67-72, Computers & Graphics,
Vol. 28, No. 1, Feb. 2004.

D. Rose, M. Kada and T. Ertl, On-the-Fly Adaptive
Subdivision Terrain. In Proceedings of the Vision Mod-
eling and Visualization Conference, Stuttgart, Ger-
many, pp: 87-92, Nov. 2001.

X. Wu and J. Peters, Interference detection for sub-
division surfaces, Computer Graphics Forum, Euro-
graphics 23(3):577585, 2004.

222

XA %7 %

it

b /

i
/]

i
7

AN
Y
il

(b) Adaptive Evaluation (¢) Adaptive Evaluation

H "
)
(d) Mesh (e) Limit (f) Uniform (g) Adaptive (h) Adaptive (i) Adaptive
Surface
T\
N

(j) Limit Sur- (k) Uniform (1) Adaptive (m) Adaptive (n) Limit Surface

face

Aty
T
\\\\uf,',jf 3

3
hs\\\\\

B
7 &
4
7R

%
s
R
AR

i’
g
g

oottty

R
\\\\‘ﬁ\ e,

R

oo tsi

et

(qi Adaptive Evaluation

(p) Uniform Evaluation

(o) Adaptive Evaluation . . \ .
Figure 6: Adaptive rendering of surfaces with arbitrary topo

