
Adaptive Rendering of Catmull-Clark Subdivision Surfa
esShuhua Lai and Fuhua (Frank) ChengGraphi
s & Geometri
 Modeling Lab, Department of Computer S
ien
eUniversity of Kentu
kyLexington, Kentu
ky 40506-0046Abstra
tA new adaptive rendering method for Catmull-Clarksubdivision surfa
es is presented. The new methodis based on dire
t evaluation of the limit surfa
e togenerate an ins
ribed polyhedron of the limit surfa
e.The new method 
an pre
isely measure error for ev-ery point of the limit surfa
e. Hen
e, it has 
omplete
ontrol of the a

ura
y of the rendering result. Cra
ksare avoided by using a re
ursive 
olor marking pro
essto ensure that adja
ent pat
hes or subpat
hes use thesame limit surfa
e points in the 
onstru
tion of theshared boundary. The new method performs limit sur-fa
e evaluation only at points that are needed for the�nal rendering pro
ess. Therefore it is both 
omputa-tion and memory eÆ
ient.CR Categories: I.3.5 [Computer Graphi
s℄: Compu-tational Geometry and Obje
t Modelling - 
urve, sur-fa
e, solid and obje
t representations;Keywords: subdivision, Catmull-Clark surfa
es,adaptive rendering, surfa
e evaluation1 Introdu
tionThere are two possible approa
hes for the adaptivetessellation of a subdivision surfa
e. One is a mesh-re�nement-based (MRB) approa
h. It approximatesthe limit surfa
e by adaptively re�ning the 
ontrolmesh of the surfa
e. The resulting mesh usually doesnot interpolate the limit surfa
e. The other one isa surfa
e-evaluation-based (SEB) approa
h. This ap-proa
h approximates the limit surfa
e by generatingan ins
ribed polyhedron of the limit surfa
e, with ver-ti
es of the polyhedron taken (evaluated) adaptivelyfrom the limit surfa
e. The MRB approa
h needs asubdivision s
heme, su
h as the Catmull-Clark methodor the Doo-Sabin method, to re�ne the input mesh.Most methods proposed in the literature for adap-tive tessellation of subdivision surfa
es belong to this
ategory. The se
ond approa
h needs a parametriza-tion/evaluation method for the limit surfa
e. With

the availability of dire
t evaluation methods of subdivi-sion surfa
es [2, 3, 4, 6℄, the se
ond approa
h 
ould bemore appealing for adaptive tessellation of subdivisionsurfa
e be
ause of its simpli
ity in nature. Currentlythere is only one paper published in this 
ategory [9℄.This paper works parametrization of Loop subdivisions
heme that reprodu
es linear fun
tions [16℄. Nothinghas been done for parametrization of Catmull-Clarksubdivision s
heme [2, 6℄ yet.In this paper we will present an SEB approa
h foradaptive tessellation of Catmull-Clark subdivision sur-fa
es. The new method 
an pre
isely measure error forevery point of the limit surfa
e. Hen
e, it has 
om-plete 
ontrol of the a

ura
y of the rendering result.Cra
ks are avoided by using a re
ursive 
olor markingpro
ess to ensure that adja
ent pat
hes or subpat
hesuse the same limit surfa
e points in the 
onstru
tion ofthe shared boundary. The new method performs limitsurfa
e evaluation only at points that are needed forthe �nal rendering pro
ess. Therefore it is both 
om-putation and memory eÆ
ient.The remaining part of the paper is arranged as fol-lows. A brief review of previous works related to thisone is given in Se
tion 2. A des
ription of the basi
 ideaof our adaptive rendering te
hnique is given in Se
tion3. The issue of 
ra
k elimination is dis
ussed in Se
-tion 4. Algorithms of our te
hnique are presented inSe
iton 5. Test results are shown in Se
tion 6. The
on
luding remarks are given in Se
tion 7.2 Previous Work2.1 Catmull-Clark Subdivision Sur-fa
esGiven a 
ontrol mesh, a Catmull-Clark subdivision sur-fa
e (CCSS) is generated by iteratively re�ning (sub-dividing) the 
ontrol mesh [1℄ to form new 
ontrolmeshes. The subdividing pro
ess 
onsists of de�ningnew verti
es (fa
e points, edge points and vertex points)and 
onne
ting the new verti
es to form new edges and1
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Figure 1: Control verti
es of an extra-ordinary pat
hand their labeling.fa
es of a new 
ontrol mesh. A CCSS is the limit sur-fa
e of the sequen
e of re�ned 
ontrol meshes. Thelimit surfa
e is 
alled a subdivision surfa
e be
ause themesh re�ning pro
ess is a generalization of the uniformB-spline surfa
e subdivision te
hnique. The valen
e ofa mesh vertex is the number of mesh edges adja
ent tothe vertex. A mesh vertex is 
alled an extra-ordinaryvertex if its valen
e is di�erent from four. Vertex Vin Figure 1 is an extra-ordinary vertex of valen
e �ve.A mesh fa
e with an extra-ordinary vertex is 
alledan extra-ordinary fa
e. 1 The valan
e of an extra-ordinary fa
e is the valen
e of its extra-ordinary ver-tex. Given an extra-ordinary fa
e, if the valen
e of itsextra-ordinary vertex is n, then the surfa
e pat
h 
or-responding to this extra-ordinary fa
e is in
uen
ed by2n+ 8 
ontrol verti
es. The 
ontrol verti
es shown inFigure 1 are the ones that in
uen
e the pat
h markedwith an \S". Re
ent work [2, 3, 4, 6℄ shows that anypoint in the limit surfa
e of a CCSS 
an be exa
tly anddire
tly evaluated from its 2n+8 
ontrol points. Hen
e
ontrol mesh subdivision is not absolutely ne
essary forthe rendering of a CCSS.2.2 Adaptive TessellationA number of adaptive tessellation methods for subdi-vision surfa
es have been proposed [5, 7, 8, 9, 12, 13℄.Most of them are mesh re�nement based, i.e., approxi-mating the limit surfa
e by adaptively re�ning the 
on-trol mesh. This approa
h requires the assignment of asubdivision depth to ea
h region of the surfa
e �rst.In [5℄, a subdivision depth is 
al
ulated for ea
h pat
hof the given Catmull-Clark surfa
e with respe
t to agiven error toleran
e �. In [7℄, a subdivision depth isestimated for ea
h vertex of the given Catmull-Clarksurfa
e by 
onsidering fa
tors su
h as 
urvature, visi-bility, membership to the silhouette, and proje
ted size1Here, without loss of generality, we assume ea
h pat
h hasat most one extra-ordinary vertex

of the pat
h. The approa
h used in [5℄ is error 
ontrol-lable. An error 
ontrollable approa
h for Loop surfa
eis proposed in [9℄, whi
h 
al
ulates a subdivision depthfor ea
h pat
h of a Loop surfa
e by estimating the dis-tan
e between two bounding linear fun
tions for ea
h
omponent of the 3D representation.Several other adaptive tessellation s
hemes havebeen presented as well [8, 13, 12℄. In [8℄, two methodsof adaptive tessellation for triangular meshes are pro-posed. The adaptive tessellation pro
ess for ea
h pat
his based on angles between its normal and normals ofadja
ent fa
es. A set of new error metri
s tailored tothe parti
ular needs of surfa
es with sharp 
reases isintrodu
ed in [12℄.In addition to various adaptive tessellation s
hemes,there are also appli
ations of these te
hniques. D. Roseet al. used adaptive tessellation method to render ter-rain [15℄ and K. M�uller et al. 
ombined ray tra
ingwith adaptive subdivision surfa
es to generate realisti
s
enes [11℄. Adaptive tessellation is su
h an importantte
hnique that an API has been designed for its generalusage [14℄. A
tually hardware implementation of thiste
hnique has been reported re
ently as well [10℄.A problem with the mesh-re�nement-based, adap-tive tessellation te
hniques is the so 
alled gap-prevention requirement. Be
ause the number of newverti
es generated on ea
h boundary of the 
ontrolmesh depends on the subdivision depth, gaps (or,
ra
ks) 
ould o

ur between the 
ontrol meshes of adja-
ent pat
hes if these pat
hes are assigned di�erent sub-division depths. Hen
e, ea
h mesh-re�nement-basedadaptive tessellation method needs some spe
ial me
h-anism to eliminate gaps. This is usually done by per-forming additional subdivision or splitting steps on thepat
h with lower subdivision depth. As a result, manyunne
essary polygons are generated in the tessellationpro
ess. In this paper, we will adaptively tessellate asubdivision surfa
e by taking points from the limit sur-fa
e to form an ins
ribed polyhedron of the limit sur-fa
e, instead of re�ning the 
ontrol mesh. Our methodsimpli�es the pro
ess of gap dete
ting and elimination.It does not need to perform extra or unne
essary eval-uations either.2.3 Evaluation of a CCSS Pat
hSeveral approa
hes [2, 3, 4, 6℄ have been presented forexa
t evaluation of an extraordinary pat
h at any pa-rameter point (u; v). In this paper, we will follow theparametrization te
hnique presented in [6℄. This te
h-nique is numeri
ally stable, employs less eigen basisfun
tions, and 
an be used to evaluate both positionand normal of any point in the limit surfa
e exa
tly2



and expli
itly. Some related results of [6℄ are summa-rized below.The parametrization/evaluation approa
h of [6℄ ispresented for general Catmull-Clark subdivision sur-fa
e. That is, the new vertex point V0 of V after onesubdivision is 
omputed as follows:V0 = �nV + �n nXi=1 Ei + 
n nXi=1 Fiwhere �n, �n and 
n are positive numbers and �n +�n + 
n = 1. In a general Catmull-Clark subdivisionsurfa
e, new fa
e points and edge points are 
omputedthe same way as in an ordinary Catmull-Clark sub-division surfa
e [1℄. The parametrization/evaluationapproa
h of [6℄ is based on an 
� partition of the pa-rameter spa
e [2, 6℄. After a detoured subdivision pathand some spe
i�
 transforms [6℄, every point in the pa-rameter spa
e of a pat
h 
an be expli
itly and pre
iselyevaluated as follows.S(u; v) =W TKm n+5Xj=0 �m�1j Mb;j G (1)where n is the valan
e of the extraordinary pat
h, 2W is a ve
tor 
ontaining the 16 B-spline power basisfun
tions:W T (u; v) = [1; u; v; u2; uv; v2; u3; u2v; uv2; v3;u3v; u2v2; uv3; u3v2; u2v3; u3v3℄ ;with 0 � u; v � 1, K is a diagonal matrix:K = Diag(1; 2; 2; 4; 4; 4; 8; 8; 8; 8; 16; 16; 16; 32; 32; 64);and m and b are de�ned as follows:m(u; v) = minfdlog 12ue; dlog 12 veg ;b(u; v) = 8<: 1; if 2mu � 1 and 2mv < 12; if 2mu � 1 and 2mv � 13; if 2mu < 1 and 2mv � 1 ;�j , 0 � j � n+5, are eigenvalues of the Catmull-Clarksubdivision metrix and Mb;j , 1 � b � 3, 0 � j � n+5,are matri
es of dimension 16� (2n + 8). �j and Mb;jare independent of (u; v) and their exa
t expressionsare given in [6℄. G is the ve
tor of 
ontrol points (SeeFig. 1 for their labeling):G = [V;E1; � � � ;En;F1; � � � ;Fn; I1; � � � ; I7℄One 
an 
ompute the derivatives of S(u; v) to anyorder by di�erentiating W (u; v) in Eq. (1) a

ordingly.For example,��uS(u; v) = (�W�u )T Km n+5Xj=0 �m�1j Mb;j G: (2)2Eq. (1) works for regular pat
hes as well, i.e., when n = 4.

(a) Cir
ums
ribed (b) Ins
ribedFigure 2: Ins
ribed and Cir
ums
ribed Approximation.With the expli
it expression of S(u; v) and its par-tial derivatives, one 
an easily get the limit point of anextraordinary vertex in a general Catmull Clark sub-division surfa
e:S(0; 0) = [1; 0; � � � ; 0℄ �Mb;n+1 �G (3)and the �rst derivatives:Du(0; 0) = [0; 1; 0; 0; � � � ; 0℄ �Mb;2 �GDv(0; 0) = [0; 0; 1; 0; � � � ; 0℄ �Mb;2 �Gwhere Du and Dv are the dire
tion ve
tors of �S(0;0)�uand �S(0;0)�v , respe
tively. The normal at (0; 0) is the
ross produ
t of Du and Dv.3 Basi
 Idea3.1 Ins
ribed ApproximationOne way to approximate a 
urve (surfa
e) is to useits 
ontrol polygon (mesh) as the approximating poly-line (polyhedron). For instan
e, in Figure 2(a), at thetop are a 
ubi
 B�ezier 
urve and its 
ontrol polygon.For a better approximation, we 
an re�ne the 
ontrolpolygon using midpoint subdivision. The solid polylineat the bottom of Fig. 2(a) is the approximating 
on-trol polygon after one re�nement. This method relieson performing iterative re�nement of the 
ontrol poly-gon or 
ontrol mesh to approximate the limit 
urve orsurfa
e. Be
ause this method approximates the limitshape from 
ontrol polygon or 
ontrol mesh \outside"(more or less) the limit shape, we 
all this method 
ir-
ums
ribed approximation.Another possible method is ins
ribed approximation.Instead of approximating the limit 
urve (surfa
e) byperforming subdivision on its 
ontrol polygon (mesh),one 
an approximate the limit 
urve (surfa
e) by in-s
ribed polygons (polyhedra) whose verti
es are taken3



from the limit 
urve (surfa
e) dire
tly. The easiest ap-proa
h to get verti
es of the ins
ribed polygons (poly-hedra) is to perform uniform midpoint subdivision onthe parameter spa
e and use the evaluated verti
es ofthe resulting subsegments (subpat
hes) as verti
es ofthe ins
ribed polylines (polyhedra). For instan
e, inFigure 2(b), at the top are a 
ubi
 B�ezier 
urve andits approximating polygon with verti
es evaluated atparameter points 0, 1/2 and 1. Similarily, the solidpolygon at the bottom of Figure 2(b) is an approximat-ing polygon with verti
es evaluated at �ve parameterpoints.Be
ause ins
ribed approximation uses points di-re
tly lo
ated on the limit 
urve or surfa
e, in most
ases, it has faster 
onvergent rate than the 
ir
um-s
ribed appromimation. As one 
an see from Fig. 2that the ins
ribed polygon at the bottom of Fig. 2(b)is 
loser to the limit 
urve than the 
ir
ums
ribed poly-gon shown at the bottom of Fig. 2(a) even though theins
ribed polygon a
tually has less segments than the
ir
ums
ribed polygon.However, the problem with both approa
hes is that,with uniform subdivision, no matter it is performed onthe 
ontrol mesh or the parameter spa
e, one wouldget unne
essarily small and dense polygons for surfa
epat
hes that are already 
at enough and, 
onsequently,slow down the rendering pro
ess. To speed up therendering pro
ess, a 
at surfa
e pat
h should not betessellated as densely as a surfa
e pat
h with big 
ur-vature. The adaptive tessellation pro
ess of a surfa
epat
h should be performed based on the 
atness of thepat
h. This leads to our adaptive ins
ribed approxi-mation.3.2 Adaptive Ins
ribed ApproximationFor a pat
h of S(u; v) de�ned on u1 � u � u2 andv1 � v � v2, we try to approximate it with the quadri-lateral formed by its four verti
es V1 = S(u1; v1),V2 = S(u2; v1), V3 = S(u2; v2) and V4 = S(u1; v2). Ifthe distan
e (to be de�ned below) between the pat
hand its 
orresponding quadrilateral is small enough,then the pat
h is 
onsidered 
at enough and will be(for now) repla
ed with the 
orresponding quadrilat-eral in the rendering pro
ess. Otherwise, we perform amidpoint subdivision on the parameter spa
e by settingu12 = u1 + u22 and v12 = v1 + v22to get four subpat
hes: [u1; u12℄ � [v1; v12℄, [u12; u2℄ �[v1; v12℄, [u12; u2℄� [v12; v2℄, [u1; u12℄� [v12; v2℄, and re-peat the 
atness testing pro
ess on ea
h of the sub-pat
hes. The pro
ess is re
ursively repeated until the

distan
e between all the subpat
hes and their 
orre-sponding quadrilaterals are small enough. The verti
esof the resulting subpat
hes are then used as verti
es ofthe ins
ribed polyhedron of the limit surfa
e. For in-stan
e, if the four re
tangles in Figure 3(a) are the pa-rameter spa
es of four adja
ent pat
hes of S(u; v), andif the re
tangles shown in Figure 3(b) are the parame-ter spa
es of the resulting subpat
hes when the above
atness testing pro
ess stops, then the limit surfa
ewill be evaluated at the points marked with small solid
ir
les to form verti
es of the ins
ribed polyhedron ofthe limit surfa
e.
1 2

3 4

(b)(a)Figure 3: Basi
 idea of the 
onstru
tion of an ins
ribedpolyhedron.In the above 
atness testing pro
ess, to measurethe di�eren
e between a pat
h (or subpat
h) and its
orresponding quadrilateral, we need to parametrizethe quadrilateral as well. The quadrilateral 
an beparametrized using a simple bilinear interpolation, asfollows:Q(u; v) = v2�vv2�v1 ( u2�uu2�u1V1 + u�u1u2�u1V2)+ v�v1v2�v1 ( u2�uu2�u1V4 + u�u1u2�u1V3) (4)where u1 � u � u2, v1 � v � v2. The di�eren
ebetween the pat
h (or subpat
h) and the 
orrespondingquadrilateral at (u; v) is de�ned asd(u; v) = k Q(u; v)� S(u; v) k2= (Q(u; v)� S(u; v)) � (Q(u; v)� S(u; v))T(5)where k � k is the se
ond norm and AT is the transposeof A. The distan
e between the pat
h (or subpat
h)and the 
orresponding quadrilateral is the maximumof all the di�eren
es:D = maxf pd(u; v) j (u; v) 2 [u1; u2℄� [v1; v2℄g:To measure the distan
e between a pat
h (or subpat
h)and the 
orresponding quadrilateral, we only need tomeasure the norms of all lo
al minima and maximaof d(u; v). Note that Q(u; v) and S(u; v) are bothC1-
ontinuous, and d(V1), d(V2), d(V3) and d(V4)4



m=1

m=2

m=3

Extra−ordinary subpatch
Extra−ordinary pointFigure 4: Partitioning of the unit square.are equal to 0. Therefore, by Mean Value Theorem,the lo
al minima and maxima must lie either inside[u1; u2℄ � [v1; v2℄ or on the four boundary 
urves. Inother words, they must satisfy at least one of the fol-lowing three 
onditions:8<: �d(u;v)�u = 0v = v1 or v = v2u1 � u � u28<: �d(u;v)�v = 0u = u1 or u = u2v1 � v � v28<: �d(u;v)�u = 0�d(u;v)�v = 0(u; v) 2 (u1; u2)� (v1; v2)

(6)
For a pat
h (or subpat
h) that is not adja
ent to anextraordinary point (i.e., (u1; v1) 6= (0; 0)), m is �xedand known (m(u; v) = minfdlog 12 ue; dlog 12 veg). Hen
eEq. (6) 
an be solved expli
itly. With the valid solu-tions, we 
an �nd the di�eren
e for ea
h of them usingEq. (5). Suppose the one with the biggest di�eren
eis (û; v̂). Then (û; v̂) is also the point with the biggestdistan
e between the pat
h (or subpat
h) and its 
or-responding quadrilateral. The pat
h (or subpat
h) issaid to be 
at enough ifD =pd ( û; v̂) � � (7)where � is a given error toleran
e. In su
h a 
ase, thepat
h (or subpat
h) is repla
ed with the 
orrespondingquadrilateral in the rendering pro
ess. If a pat
h (orsubpat
h) is not 
at enough yet, i.e., if Eq. (7) doesnot hold, we perform a midpoint subdivision on thepat
h (or subpat
h) to get four new subpat
hes andrepeat the 
atness testing pro
ess for ea
h of the newsubpat
hes. This pro
ess is re
ursively repeated untilall the subpat
hes satisfy Eq. (7).

A 1

A 5

2C

B 2

A 3

B 4

C 1

A 6
B 3 A 4

B 1

B 5
C 3

4
C 5

A 2

CFigure 5: Cra
k prevention.For a pat
h (or subpat
h) that is adja
ent to an ex-traordinary point (i.e. (u1; v1) = (0; 0) in Eq. (6)),m is not �xed and m tends to 1 (see Figure 4). Asa result, Eq. (6) 
an not be solved expli
itly. Oneway to resolve this problem is to use nonlinear numer-i
al method to solve these equations. But numeri
alapproa
h 
annot guarantee the error is less than � ev-erywhere. For pre
ise error 
ontrol, a better 
hoi
eis needed. In the following, an alternative method isgiven for that purpose.Eq. (3) shows that S(u; v) and Q(u; v) both 
on-verge to S(0; 0). Hen
e, for any given error toleran
e �,there exists an integerm� su
h that ifm � m�, then thedi�eren
e between S(u; v) and S(0; 0) is smaller than�=2 for any (u; v) 2 [0; 1=2m℄� [0; 1=2m℄, and so is thedi�eren
e between Q(u; v) and S(0; 0). Consequently,when (u; v) 2 [0; 1=2m℄ � [0; 1=2m℄, the di�eren
e be-tween S(u; v) and Q(u; v) is smaller than �. The valueofm�, in most of the 
ases, is smaller than 12. For otherregions of the unit square with dlog 12 u2e � m < m�, eq.(6) 
an be used to �nd the di�eren
e between S(u; v)and Q(u; v) (see Figure 4). Therefore, by 
ombiningall these di�eren
es, we have the distan
e between thegiven extra-ordinary pat
h (or subpat
h) and the 
orre-sponding quadrilateral. If this distan
e is smaller than�, we 
onsider the given extra-ordinary pat
h (or sub-pat
h) to be 
at, and use the 
orresponding quadrilat-eral to repla
e the extra-ordinary pat
h (or subpat
h)in the rendering pro
ess. Otherwise, repeatedly subdi-vide the pat
h (or subpat
h) and perform 
atness test-ing on the resulting subpat
hes until all the subpat
hessatisfy Eq. (7).4 Cra
k EliminationDue to the fa
t that adja
ent pat
hes might be approx-imated by quadrilaterals 
orresponding to subpat
hesfrom di�erent levels of the midpoint subdivision pro-
ess, 
ra
ks 
ould o

ur between adja
ent pat
hes. For5



instan
e, in Figure 3, pat
h 2 is approximated by onequadrilateral but pat
h 4 is approximated by 4 quadri-laterals and pat
h 1 is approximated by 7 quadrilat-erals. Consider the boundary shared by pat
h 1 andpat
h 2. On the pat
h 2 side, that boundary is a linesegment de�ned by two verti
es : S(D) and S(G). Buton the pat
h 1 side, the boundary is a polyline de�nedby four verti
es : S(D), S(E), S(F), and S(G). Theywould not 
oin
ide unless S(E) and S(F) lie on the linesegment de�ned by S(D) and S(G). But that usuallyis not the 
ase. Hen
e, 
ra
ks would appear betweenpat
h 1 and pat
h 2.Fortunately Cra
ks 
an be eliminated simply by re-pla
ing ea
h boundary of a pat
h or subpat
h withthe one that 
ontains all the evaluated points forthat boundary. For example, in Figure 5, all thedashed lines should be repla
ed with the 
orrespond-ing polylines. In parti
ular, boundary A2A5 of pat
hA1A2A5A6 should be repla
ed with the polylineA2C4B4A5. As a result, polygon A1A2A5A6 is re-pla
ed with polygon A1A2C4B4A5A6 in the render-ing pro
ess. For rendering purpose this is �ne be-
ause graphi
s systems like OpenGL 
an handle poly-gons with non-
o-planar verti
es and polygons with anynumber of verti
es. The points shown in Figure 5 arepoints of the limit surfa
e, not points in the parameterspa
e of the limit surfa
e.A potential problem with this pro
ess is the newpolygons generated by the 
ra
k elimination algorithmmight not satisfy the 
atness requirement. To ensurethe 
atness requirement is satis�ed everywhere whenthe above 
ra
k elimination method is used, we needto 
hange the test 
ondition in Eq. (7) to the followingone: pd ( �u; �v) +pd ( û; v̂) � � (8)where (û; v̂) and (�u; �v) are solutions of Eq. (6) and theysatisfy the following 
onditions:� Among all the solutions of Eq. (6) that are lo
atedon one side of Q(u; v), i.e. solutions that satisfyQ(u; v) � 0, d(û; v̂) is the biggest.� Among all the solutions of Eq. (6) that are lo
atedon the other side of Q(u; v), i.e. solutions thatsatisfy Q(u; v) < 0, d(�u; �v) is the biggest.From the de�nition of (û; v̂) and (�u; �v), we 
an see thatsatisfying Eq. (8) means that the pat
h being tested islo
ated between two quadrilaterals that are � away.Note that all the evaluated points lie on the limitsurfa
e. Hen
e, in Fig. 5, points A2;C4;B4 and A5 ofpat
hA2A3A4A5 are also points of pat
hA1A2A5A6.With the new test 
ondition in Eq. (8), we know that apat
h or subpat
h is 
at enough if it is lo
ated between

two quadrilaterals that are � away. Be
ause pointsA2;C4;B4 and A5 are on the limit surfa
e, they arelo
ated between two quadrilaterals that are � away. Sois the polygon A1A2C4B4A5A6. Now the pat
h (orsubpat
h) and its approximating polygon are both lo-
ated inside two quadrilaterals that are � away. Hen
ethe overall error between the pat
h (or subpat
h) andits approximating polygon is guaranteed to be smallerthan �.In previous methods for adaptive tessellation of sub-division surfa
es [7, 5, 8, 12℄, the most diÆ
ult part is
ra
k prevention. Yet in our method, this part is thesimplest part to handle and implement. The resultingsurfa
e is error 
ontrollable and guaranteed to be 
ra
kfree.5 AlgorithmsIn this se
tion, we dis
uss the important steps of theadaptive tessellation pro
ess and present the 
orre-sponding algorithms.5.1 Global Index IDAll 
urrently available subdivision surfa
e parametriza-tion and evaluation te
hniques are pat
h based [2, 4, 6℄.Hen
e, no matter whi
h method is used in the adaptivetessellation pro
ess, a pat
h, from its own (lo
al) stru
-ture, 
annot see verti
es generated by adja
ent pat
hes,even the verti
es are generated on a 
ommon bound-ary. For example, in Figure 5, verti
es C4 and B4 areon the shared boundary of pat
hes A1A2A5A6 andA2A3A4A5. But pat
h A1A2A5A6 
annot see theseverti
es from its own stru
ture be
ause these verti
esare not generated by this pat
h. To make a
tivitiesof adja
ent pat
hes visible to ea
h other and, 
onse-quently, make 
ra
k dete
tion unne
essary, one shouldassign a global index ID to ea
h evaluated vertex sothat� all evaluated verti
es with the same 3D positionhave the same index ID;� the index ID's are sorted in v and then in u, i.e., if(ui; vi) � (uj ; vj), then IDi � IDj , unless IDi orIDj has been used in previous pat
h evaluation.With a global index ID, 
ra
k prevention is not a prob-lem even with a pat
h based approa
h. A
tually, sub-sequent pro
essing 
an all be done with a pat
h basedapproa
h and still performed eÆ
iently. For example,in Figure 5, pat
h A1A2A5A6 
an see both C4 andB4 even though they are not evaluated by this pat
h.In the subsequent rendering pro
ess, the pat
h simply6



output all the marked verti
es (to be de�ned below) onits boundary that it 
an see to form a polygon for therendering purpose, i.e., A1A2C4B4A5A6.5.2 Adaptive MarkingThe purpose of adaptive marking is to mark thosepoints in uv spa
e where the limit surfa
e shouldbe evaluated. With the help of the global index ID,this step 
an be done on an individual pat
h basis.Initially, all (u; v) points are marked white. If surfa
eevaluation should be performed at a point and theresulting vertex is needed in the rendering pro
ess,then that point is marked in bla
k. This pro
ess
an be easily implemented as a re
ursive fun
tion. Apseudo 
ode for this step is given below.AdaptiveMarking(P, u1, u2, v1, v2)1. Evaluate(P, u1, u2, v1, v2),2. AssignGlobalID(P, u1, u2, v1, v2),3. if (FlatEnough(P, u1, u2, v1, v2))4. MarkBla
k(P, u1, u2, v1, v2)5. else6. u12 = (u1 + u2)=27. v12 = (v1 + v2)=28. AdaptiveMarking(P, u1, u12, v1, v12)9. AdaptiveMarking(P, u12, u2, v1, v12)10. AdaptiveMarking(P, u12, u2, v12, v2)11. AdaptiveMarking(P, u1, u12, v12, v2)This routine adaptively marks points in the param-eter spa
e of pat
h P. Fun
tion `Evaluate' evaluateslimit surfa
e at the four 
orners of pat
h or subpat
hP de�ned on [u1; u2℄� [v1; v2℄. Fun
tion `FlatEnough'uses the method given in se
tion 3 and Eq. (7) to tellif a pat
h or subpat
h is 
at enough. Fun
tion `Mark-Bla
k' marks the four 
orners of pat
h or subpat
h Pde�ned on [u1; u2℄ � [v1; v2℄ in bla
k. All the marked
orner points will be used in the rendering pro
ess.5.3 Adaptive Rendering a Single Pat
hThe purpose of this step is to render the limit surfa
ewith as few polygons as possible, while preventing theo

urren
e of any 
ra
ks. Note that the limit surfa
ewill be evaluated only at the points marked in bla
k,and the resulting verti
es are the only verti
es thatwill be used in the rendering pro
ess. To avoid 
ra
ks,ea
h marked points must be rendered properly. Hen
espe
ial 
are must be taken on adja
ent pat
hes orsubpat
hes. With the help of adaptive marking, thispro
ess 
an easily be implemented as a re
ursive fun
-tion as well. A pseudo 
ode for this step is given below.

AdaptiveRendering(P, u1, u2, v1, v2)1. if (NoMarkedPointInside(P, u1, u2, v1, v2))2. RenderPolygon(P, u1, u2, v1, v2)3. else4. u12 = (u1 + u2)=25. v12 = (v1 + v2)=26. AdaptiveRendering(P, u1, u12, v1, v12)7. AdaptiveRendering(P, u12, u2, v1, v12)8. AdaptiveRendering(P, u12, u2, v12, v2)9. AdaptiveRendering(P, u1, u12, v12, v2)This routine adaptively renders marked points inpat
h or subpat
h P. Fun
tion `NoMarkedPointInside'tests if none of the points inside [u1; u2℄ � [v1; v2℄,ex
luding the boundary points, are marked. If all theinterior points are in white (i.e. not marked), it returnsTRUE. Fun
tion `RenderPolygon' is de�ned as follows.RenderPolygon(P, u1, u2, v1, v2)1. glBegin(RenderModel)2. Output all the marked points between3. (u1; v1)! (u2; v1)4. (u2; v1)! (u2; v2)5. (u2; v2)! (u1; v2)6. (u1; v2)! (u1; v1)7. glEnd()6 Test ResultsThe proposed approa
h has been implemented in C++using OpenGL as the supporting graphi
s system onthe Windows platform. Some of the tested results areshown in Figure 6. We also summarize those tested re-sults in Table 1. The 
olumn underneath AjU in Table1 indi
ates the type of tessellation te
hnique (Adaptiveor Uniform) used in the rendering pro
ess. The termA/U ratio means the ratio of number of polygons inan adaptively tessellated CCSS to its 
ounter part ina uniformly tessellated CCSS with the same a

ura
y.From Table 1 we 
an see that all the adaptively tes-sellated CCSS's have relatively low A/U ratios. Theerror in the last 
olumn is absolute error. We 
an eas-ily see that, for the same model, the smaller the error,the lower the A/U ratio. For example, Fig. 6(g) haslower A/U ratio than Fig. 6(h) and Fig. 6(i). Thesame holds for Fig. 6(l) and Fig. 6(m). An interestingfa
t is that Fig. 6(f) uses many more polygons thanFig. 6(g) does, while the former is less a

urate thanthe latter. This shows the presented adaptive tessella-tion method is 
apable of providing a higher a

ura
ywith less polygons. However, for di�erent models, 
om-paring their absolute errors might not make pra
ti
al7



sense be
ause absolute error is not AÆne transforma-tion invariant.Table 1: Extra information of Fig. 6Figure AjU polygons A/U Ratio ErrorFig. 6(a) U 20480 100.00% 0.1Fig. 6(b) A 4688 22.89% 0.1Fig. 6(
) A 8017 8.26% 0.015Fig. 6(f) U 6912 100.00% 0.105Fig. 6(g) A 2068 7.48% 0.050Fig. 6(h) A 1432 20.72% 0.105Fig. 6(i) A 412 23.84% 0.250Fig. 6(k) U 22656 100.00% 1.0Fig. 6(l) A 3048 13.45% 1.0Fig. 6(m) A 2238 39.51% 1.5Fig. 6(o) A 6654 28.15% 0.0003Fig. 6(p) U 17088 100.00% 0.02Fig. 6(q) A 11544 4.22% 0.01
7 SummaryAn adaptive rendering method based on ins
ribed ap-proximation for general Catmull-Clark subdivision sur-fa
es is presented. The new method only evaluatesthose limit surfa
e points that are needed in the �-nal rendering pro
ess, and it takes almost no e�ort forthe new method to eliminate 
ra
ks in the resultingins
ribed polyhedron of the limit surfa
e. Hen
e thenew mthod is both 
omputation eÆ
ient and memoryeÆ
ient.Currently, all the methods for adaptive renderingwork on a pat
h by pat
h basis. One of our futureworks is to take the whole surfa
e into 
onsideration,so that not only the inner-pat
h redundan
y, but theinter-pat
h redundan
y, 
an be eliminated as well.A
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(a) Uniform Evaluation (b) Adaptive Evaluation (
) Adaptive Evaluation

(d) Mesh (e) LimitSurfa
e (f) Uniform (g) Adaptive (h) Adaptive (i) Adaptive

(j) Limit Sur-fa
e (k) Uniform (l) Adaptive (m) Adaptive (n) Limit Surfa
e

(o) Adaptive Evaluation (p) Uniform Evaluation (q) Adaptive EvaluationFigure 6: Adaptive rendering of surfa
es with arbitrary topology.9


