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Abstract. A method to scale a Catmull-Clark subdi-
vision surface while holding the shape and size of spe-
cific features (sub-structures) unchanged is presented.
The basic idea of the method, fiz-and-stretch, is sim-
ilar to a previous approach for trimmed NURBS sur-
faces [20], i.e., the new surface is formed by fixing se-
lected regions of the given subdivision surface that con-
tain the features, scaling and stretching the remaining
part; the goal is to ensure that the resulting surface
reflects the shape and curvature distribution of the un-
constrainedly scaled version of the given surface. How-
ever, the stretching process, the core of the entire pro-
cess, is more complicated because of the complexity of
a subdivision surface’s topology. The major contribu-
tions of the paper include new strain energy computa-
tion techniques and energy optimization techniques for
regions around extra-ordinary points. The new method
is more powerful than the previous method in that it
can handle more complicated shapes and, consequently,
can be used for more challenging applications. Test re-
sults on several mechanical parts that can not be rep-
resented by trimmed NURBS surfaces are included.
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1 Introduction

Constrained shape modification refers to the process of
altering the shape of an object while holding certain
features unchanged. The altering process may involve
scaling and/or deformation. This area has attracted
the interest of industry recently in that it provides a
possibility to reshape an existing model without affect-
ing certain important features and, consequently, avoid
expensive redesign process.

Constrained shape deformation has been studied for
a while. Topics that have been considered include axial
deformation and free-form deformation. Both of which
have been thoroughly investigated [1, 3, 4, 5, 6, 9, 10,

12, 15, 16, 17, 18] and some of the techniques have al-
ready been implemented by popular CAD/CAM soft-
ware packages such as ACIS and CATIA.

Constrained shape scaling, as a design tool, has not
been studied so extensively yet. The only known re-
sults are two techniques for trimmed NURBS surfaces.
Features are defined by trimming curves. In the first
case [19], an attach-and-deform based approach is used.
The new surface is formed by scaling the given NURBS
surface according to the scaling requirement and then
attaching the original features to the scaled surface
at appropriate locations. The attaching process re-
quires a minor deformation of the scaled surface to
ensure complete attachment. The second case [20] is
fix-and-stretch based. The new surface is formed by
fixing selected regions of the given trimmed NURBS
surface that contain the trimming curves while scal-
ing/stretching the remaining part of the surface to
reach certain boundary condition. The stretching pro-
cess of the second approach and the deformation pro-
cess of the first approach are both performed as an en-
ergy optimization process to ensure that the resulting
surface reflects the shape and curvature distribution of
the unconstrainedly scaled version of the given surface.
The second method is more robust (can tolerate bigger
scaling factors) while the first method is more efficient.
These methods can only consider features not intersect-
ing the boundary of the surface.

In this paper, we consider constrained scaling for
Catmull-Clark subdivision surfaces. Subdivision sur-
faces, with their capability in modeling/representing
complex shape of arbitrary topology [7] and covering
both parametric and discrete forms [13, 14], are re-
placing NURBS surfaces as the next representation
scheme in geometric modeling and CAD/CAM. How-
ever, they are not used as a major surface representa-
tion in CAD/CAM systems yet because of lacking nec-
essary geometric algorithms and modeling techniques
in shape design. The work developed in this paper will
fill up some gap in that direction and, consequently,



will help the process of making subdivision surfaces the
next generation surface representation for CAD/CAM
applications.

The concept of fiz-and-stretch [20] is followed in this
paper. However, the stretching process, performed as
an energy optimization process, is more complicated
because of the complexity of a subdivision surface’s
topology. Efficient energy computation techniques and
optimization techniques have been developed to deal
with topological complexity of a subdivision surface.
The new method is more powerful than the previous
method [20] in that it can handle more complicated
shapes and, consequently, can be used for more chal-
lenging applications.

The remaining part of the paper is arranged as fol-
lows. A formal description of the problem is given in
Section 2. The basic idea of the proposed method is
presented in Section 3. Techniques needed in construct-
ing the new surface are described in Sections 4-8. Test
results of the proposed method are shown in Section 9.
Concluding remarks are given in Section 10.

2 Problem Formulation

The problem of constrained scaling of Catmull-
Clark subdivision surfaces can be described as fol-
lows: Given a Catmull-Clark subdivision surface S and
a set of features C; (i =1,2,...,q) on the surface, con-
struct a new surface S whose representation is a scaled
version of the given surface S, but carries all the origi-

nal features C;.

Given a control mesh, a Catmull-Clark subdivision
surface (CCSS) is generated by recursively refining the
mesh [2, 8]. Each mesh refining step involves the con-
struction of three new types of points: face points, edge
points and vertex points. New points are connected to
form a new control mesh. These control meshes con-
verge to a limit surface. The limit surface is called a
subdivision surface because the mesh refining process
is a generalization of the uniform B-spline surface sub-
division technique. Therefore, CCSSs include uniform
B-spline surfaces and piecewise Bézier surfaces as spe-
cial cases. It is also known recently that CCSSs include
non-uniform B-spline surfaces and NURBS surfaces as
special cases [13]. CCSSs can model/represent complex
shape of arbitrary topology because there is no limit on
the shape and topology of the control mesh of a CCSS
[7]. See Figure 1(d) for the representation of a ventila-
tion control component with a single CCSS. The initial
control mesh of the surface and the control mesh af-
ter one refinement and two refinements are shown in

(a), (b) and (c), respectively. The ventilation control
component is a solid with seventeen holes (handles). It
can not be represented by a single trimmed B-spline or
NURBS surface.

v

(c)
Figure 1: (a) Initial control mesh, (b) control mesh

after one refinement, (c) after two refinements, and (d)
limit surface of a ventilation control component.

A feature is a sub-structure defined by a set of con-
nected patches of the surface. Therefore, each C; of S
is defined by a set of control points with related topo-
logical information whose limit surface defines a sub-
structure of the surface. For instance, each hole in the
above figure can be regarded as a feature. Features do
not intersect each other and they do not intersect the
boundary of the surface if the surface is not closed.

If the given scaling factors in the z, y and z directions
are Sz, Sy and S, respectively, then the new surface S
is expected to be as close to S=T,S as possible, where
S is the unconstrainedly scaled version of S by T, a
scaling matrix with scaling factors S;, S, and S.. The
requirement that the new surface carries all the original
features C; means that C; are also features of the new
surface S, subject to some translation and rotation.

3 Basic Idea

In general, due to change of curvature distribution after
a scaling process, it is not possible for the new surface
S to have exactly the same shape and dimension as the
unconstrainedly scaled surface S = T,S while carrying
all the original features. An approximation method has
to be used to construct S. In this work, the new sur-
face will be constructed using a fiz-and-stretch based
approach [20].

The main idea of this approach is to fix regions of
the given subdivision surface that contain the features
while scaling and stretching the remaining part of the



surface until some conditions are reached (see Figure
2). The surface is divided into three parts, the features
(region I of the smaller ellipse in Figure 2), neighboring
regions of the features (region II in Figure 2), and the
remaining part (region III in Figure 2). The features
that need to be fixed during the scaling and stretch-
ing process have to be transformed to appropriate lo-
cations first (see region I of Figure 2). Region III is
simply scaled using the given scaling factors. Region
II is stretched to provide a smooth connection between
the relocated features and the scaled region III.

Stretching Relocation

Figure 2: Basic idea of the fix-and-stretching approach.

The stretching process ensures that the shape and
curvature distribution of S are as close to those of
the unconstrainedly scaled version of the given CCSS,
S, as possible, while carrying all the original features
C;. This is achieved by minimizing a shape-preserving
objective function defined on the difference of these
two surfaces on neighboring regions of the features.
Efficient techniques have been developed for the en-
ergy evaluation process and the optimization process.
The stretching process does not change the topologi-
cal structure of the subdivision surface. Therefore, the
resulting surface S is again a CCSS.

The main steps of our approach are shown below.
Surface partitioning

Feature relocation

Setting up shape-preserving objective function
Energy evaluation

Energy optimization

The last two steps are technically more difficult. But
the first two steps are functionally more important be-
cause they determine the outcome of the stretching pro-
cess. Details of these steps are given subsequently.

O Lo

4 Surface Partitioning

This step first subdivides the surface three times to en-
sure the precision of the energy computation process

(Section 7), then constructs a neighboring region for
each specified feature C; of the surface. These regions
effectively divide the control vertices of S into three
groups: Type-I, Type-1I and Type-III. Type-I vertices
are control vertices of patches that contain the features.
Type-II vertices are vertices in the neighboring regions
of the features. Type-III vertices are the remaining ver-
tices. Type-III vertices will be unconstrainedly scaled
using the given scaling factors; Type-I vertices will be
move to new locations through a translation and a rota-
tion. The optimization process is performed on Type-II
vertices only. The construction of the neighboring re-
gions for the features is tricky. A small neighboring re-
gion will make the stretching process more efficient, but
at the cost of getting sharp turns around boundaries
of the features. A large neighboring region will give
smoother curvature distribution around the boundaries
of the features, but might generate sharp edges or cor-
ners around the boundaries of Type-III region (actu-
ally, if Type-III region is empty, one can not perform
constrained scaling at all, due to lack of boundary con-
ditions). Here the neighboring region is obtained by
expanding outward uniformly (for a fixed number of
patches) for each feature edge. The width of the band
depends on the complexity of the features and the en-
tire object. A guideline is to expand to an area where
the curvature variation of the surface is small.

5 Relocating Features

This step is to move each feature of S, C;, to an appro-
priate location that is not only as close to the uncon-
strainedly scaled surface S = TS as possible but also
with an appropriate orientation. The first requirement
is to ensure that the Euclidean distance between the
new surface S and the unconstrainedly scaled version S
around the features is as small as possible. The second
requirement is to ensure that the curvature difference
between the new surface S and the unconstrainedly
scaled version S around the features is small as well.

To achieve the second requirement, for each feature
C; of S, aleast squares method is used to find a plane P;
whose distance to the boundary points of the feature
is a minimum. For each scaled feature T,C; of S, a
least squares method is used to find a plane PZI whose
distance to the boundary points of the scaled feature
is a minimum. A rotation is then performed on C; to

make the normal of P; the same as that of Pi' .

After that, a least squares method is used to compute
a displacement vector A; for each (rotated) feature C;



so that by adding A; to the control points of the (ro-
tated) feature C;, one would move the (rotated) fea-
ture to a location satisfying the first requirement. A;
is computed by minimizing the following summation

Do lVig+ 480 - Vil

where V; ; are boundary points of the feature C; and
V;’j are boundary points of the scaled feature T5C;.

6 Setting Up Shape-Preserving
Objective Function

A shape-preserving objective function is used to deter-
mine type two control points of the new surface S in an
optimization process. The object function is defined as
an energy function of the displacement function

Q=S-T.S (1)

for region II, so that by minimizing the energy of the
displacement function Q, one can minimize the shape
change of the new surface in region II. The energy func-
tion is defined as follows:

E(Q) = aEb + ﬂEst + ’yEsp (2)

where E, E, and E,, are bending strain energy,
stretching strain energy and spring potential energy[11,
21] of Q,

Ey = % f fD[(Quu + vi)2
- 2(Quuvi - wa)]dudv
Fu = L1[[0Q+Q2)+2QuQu)duds O

Esp = %f\fD deudv

and a, 8 and 7 are weights to be determined. The
values of the weights o, § and 7y in (2) are set one here.
This leads to the minimization of the average energy of
Ey, E, and Eg,. A more complicated setting of these
weights is considered in [20].

7 Energy Evaluation

The energy items required in the shape-preserving ob-
jective function (2) are evaluated here for patches con-
tained in region II. We present compact energy forms
for patches not adjacent to an extra-ordinary point
first.

A patch S not adjacent to an extra-ordinary point
is a regular bicubic B-spline surface patch and can be
express as

S(u,v) =U MG MT VT
where U is the wu-parameter vector, V is the wv-
parameter vector, M is the B-spline coefficient matrix
and G is the 4 x 4 control point matrix. All the vectors
used in this paper are row vectors. The spring energy,
stretching energy and bending energy of such a patch
S can be expressed as follows:

Ey(S) = 3¥io(D:MGMTDMGTMTY]),
Ey(S) = 1% (AMGMTDMGTMTY]T)
+152 (DiMGMTAMGTMTYT)
+3° (BiMGMTBMGTMTY]T),
E(S) = 1Y% (CiMGMTDMGTMTY]T)

+13% (D:MGMTCMGT MTY]T)
+ Yo (AMGMTAMGT MTY]T),

(4)
respectively, where
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[ Co ] [0 0 0 O
c (of} B 000 O
- Cy - 00 4 6 |’
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[ Y} [1 0 0 O
_ i _ 0100
v o= Y, - 0 010
| Y3 | 00 01
(5)

The proof of (4) is shown in Appendix A. If we define
f(U,G1,G2, X, V) as follows:

fU,G1,G2, X, V) =UMG MTXMGTMTVT (6)

then the total energy of S can be expressed as:

E = Esp+Est+Eb
= 2 f((4i+Ci+ Di)/2,G,G,D,Y;)
+2 f((24i + D)) /2,G,G, A,Y;) (7)

+3 f(B;,G,G,B,Y;)
+ S 1(Di/2.6.6.0,Y5).



The total energy of an extra-ordinary patch (a patch
that has an extra-ordinary vertex) has to be computed
with care. The current energy definition of a regular
4 x 4 bicubic B-spline surface patch S is not divisible,
i.e., the energy of S is not equal to the sum of the
energies of its four subpatches (S1,S2,Ss,S4) after a
subdivision. Hence, to make the energy items defined
in (3) comparable, they must be calculated to the same
subdivision level. This requirement, however, presents
a problem for extra-ordinary patches.

Figure 3: A Catmull-Clark subdivision on S generates
three regular bicubic B-spline patches Si1, S15 Si3.

Let V be an extra-ordinary point of valence n. Let S
be a patch adjacent to V and the control point vector
of S be N. N contains 2n + 8 points (see Figure 3 for
an example when n = 5. The control point vector of S
in this case is shown below).

N = { V,EI’E27E3’E47E5,F1,F2,F3’ (8)
F4,F5,111,110, 113,114, D51, Ino, Ing }

The energies of S can not be calculated using the above
formulas directly because the control point set of S is
not a 4 x 4 grid. If we perform a Catmull-Clark subdi-
vision on S, three of the resulting subpatches, S11, S
and Si3, are regular bicubic B-spline patches (see Fig-
ure 3) and, consequently, can be evaluated using the
above formulas. If we perform a Catmull-Clark sub-
division on the new extra-ordinary subpatch Si4, one
gets three more regular bicubic B-spline patches, S,
S22, S23, and a new extra-ordinary subpatch So4. By
iteratively repeat this process, one gets a sequence of
regular bicubic B-spline patches { Srp1,Sr2,Sr3 | L =

1,2,3,... }. But we can not use the sum of their energies
to represent the energy of the extra-ordinary patch be-
cause these subpatches are of different subdivision lev-
els. To overcome this problem, note that for a regular
(4 x 4) bicubic B-spline surface patch Sg_; and its four
subpatches (Sz1, Sr2, Sr3, Sra) after a subdivision,
we have the following result for their energies:
E(Sp-1) 1

li =-.
L5eo E(Sz1) + E(Sp2) + E(Sz3) + E(Sza) 4

This follows from the observation that when L is suf-
ficiently large, Sp_; and its subpatches all have the
same height. On the other hand, they all have the
same parameter space [0,1] x [0,1]. Therefore, the en-
ergy of each subpatch is the same as Sp_;. The ratio
converges to 1/4 quite fast. According to our experi-
ments, the ratio is already close enough to 1/4 when
L = 3 (see Figure 4 for the rates of convengence on
ten randomly chosen 4 x 4 patches). This shows that
energies of subpatches from different levels can be con-
sidered together if the energy of a subpatch is divided
by 4% first where L (L > 3) is the subdivision level of
the subpatch. Therefore, the total energy of S can be
expressed as

E(S) = i E(St1) + EisLLg) +BSL) ()

L=1

with E(Srq) = Esp(Srd) + Est(Sra) + Ep(Sta), d =
1,2,3.

0.5
0.45 |
o 0.4’§

= 0.35
3 \
0.3

0.25 - T ——————
0.2

1 2 3 4 5 6 7 8
Level of Subdi vi sion

9 10

Figure 4: Rates of convergence of eq. (9) on ten ran-
domly chosen 4 x 4 patches.

The control point matrix Gp4 of each Sy can be
computed as follows:

3

GL,d = ZdeSSL_lNTY}T (10)
=0

where S is the K x K Catmull-Clark subdivision matrix

(K = 2n +8), S is the (K +9) x (K + 9) extended



Catmull-Clark subdivision matrix [14], Py; is a 4 x (K +
9) picking matriz and Y; are defined in (5). Each row of
the picking matrix Py picks an appropriate entry from
SSL-INT and P depends on d and j only. The proof
of (10) is shown in Appendix B. The computation of
each of the three energies involved in (9) requires the
evaluation of the function f defined in (6) for each G 4.
With these values, the energy E(S) of the extraordinary
patch S can then be expressed as

ES) = 23:1 E?:o Zogj,kgs{ _
hir((Ai + Ci + D;)/2, D, d) Rxhy (Y3, d)
+hjx((24; + D;)/2, A, d) Ry hi (Y3, d)
+h]k (Bza BJ d)RNhk (Ytn d)
+hjk (Di/2, C, d)RN]_'Lk (YZ, d)}

(11)
where
hin(U, X,d) = (Y, MTXMY,F)UMP,;S,
hi(V,d) = ST (Pa) TMTVT, (12)
Ry =Y SLINTN(SL-1)T / 4L,
Ry satisfies the following condtion.
Ry — 1SRNST = iNTN (13)

The proof of (11) is shown in Appendix C.

8 Energy Optimization

This step is to minimize the energy of the displacement
function Q = S — TS to find new locations of Type-II
vertices. In the following, for the sake of convenience,
we shall also use E(G) to denote the energy of a surface
whose control mesh is G. The energy of a CCSS is the
sum of its patches’ energies. Therefore, the energy of
Q can be expressed as

where G and @ are the control meshes of S and TS,
respectively, and G; and G; are the control meshes of
patch i of S and TS, respectively. G is unkown. To
minimize E, we set partial derivative of E with respect
to each control point in region II to zero,

P, e G (14)

OE(G - G) _ 3 9B (G Gi) _,

6Pk 8Pk

Each E(G; — C;'z) is a quadratic expression, so equation
(14) is a system of linear equations Az = b where z is

the vector of unknows Py. By solving this system, we
get new location of each point in region II. The point
is how to efficiently find A and b. It is sufficient to
show the process for a patch of Q = S — TS only. For
the sake of notation simplicity, we shall use G and G,
instead of G; and G, to represent the control meshes
of a patch of S and TS in region II, respectively.

We first consider the case of a 4 x 4 patch. Let

F(UJGJG]-JXJV)
=UM(G -G)MTXM(G - G)TMTVT
= f(U7G7G7X7V) _f(U7G17G7X7V)
_f(UaGaGlaXav) +f(UaG17G1;XaV)

(15)

G is fixed and G is unknown. For each P;; of G, we
have

0F(U,G,G1,X,V)/0P;;
=f(U,G',G,X,V) + f(U,G,G'", X,V)
- f(UJGIJGIJXJV) - f(U,GI,Gl,X, V)
(16)
where G’ is the derivative of G with respect to P;;, i.e.

' _ 1, if (m,n)=(i,j)
(G mn = { 0, otherwise.
Since F(U,G,G1,X,V) is a quadratic polynomial in
P;;, the partial derivative of F(U,G,G1,X,V) is linear
in P;; and, consequently, can be put in the following
form

OF(U,G,G1, X,V
8Pij

m,n

(17)

where © and ¥,,, are constants. ©® can be obtained
by setting all P,,, to zero, i.e., setting G = Gy in (17)
where

(G = { 0, P, is a variable in G
mn Pn, P,.. is a constant in G.
(18)
U ,.n, the coefficient of P,,,, can be obtained by setting
all other variable P;; to zero, setting P, to one, and
then subtracting © from the result. ® and ¥,,,, can be
expressed as follows.

OF(U,Gy,G1,X,V)

oU,G,G1,X,V) = 19
(a sy U1, A, ) BP” ’ ( )
F ! X
lpmn(U,G,G]_,X,V): 6 (U7G0+G5G17 7V) _@
6Pij
(20)

where Gy is defined in (18).



Therefore, following eq. (7), the energy of the dis-
placement function for a 4 x 4 patch is

E(G-G1) =

? o F((Ai + Ci + D))/2,G,G1,D,Y;)

+3°%  F((24; + Dy)/2,G,G1, A, )
23 (B;,G,G4,B,Y;)

+ 30 o F(

Dz/2a G; G17 C; }/;)
Then the partial derivative of E(G — G1) can be put in
a linear form, similar to eq. (17), as follows:

ngn Prn+¢

0 (21)
o F
=0

8GG1

where the constant term is

(=32 ,0((4i + C; + D;)/2,G,G1,D,Y;)
+ 3%, O((24; + D;)/2,G,G1, A, Y;)
+3% ,0(B;,G,G1,B,Y)
+30 ,0(D;/2,G,G1,C,Y;)

(22)

and the coefficient of P,,,, is

Emnzzlg 0 mn((Az+Cz+Dz)/25GJG15D;Y;)
+Zz (] ((2Ai+Di)/27G7G17A7Y;)
+ Zz 0 v "(BiﬂGaGlaBaY'i)
+Ez 0 ¥mn(Di/2,G,G1,C,Ys).
(23)

We now consider the case of an extraordinary patch.

From equation (13), we have
1 r_ 1 T

R(N—Nl) — ZSR(N—Nl)S = Z(N — N]_) (N — N]_)
Ry_n, is an implicit function of (N — N;)T(N — Ny).
N, is fixed and N is unknonw. If Py is a variable in N

then
R'((N —N)"(N = Ny))'

—LSR/(N - Ny)T(N — Ny))' ST (24)
= (N = N)T(N = M)
where
(N = N)T(N = Ny))' (25)

= (N")T(N = N1) + (N = Ny)"(N')
and R' and N’ are the derivatives of R(y_n,) and N
with respest to Py, respectively. This is a system of
linear equations. Assume the solution of equation (24)
is R(N_Nl) = g(N,N;,N'), where N' is defined as fol-
lows:

ifm=k

otherwise.

m={

Then the partial derivative of the energy of an extra-
ordinary patch can be put in the following form

Zsm m+¢

where the constant term and the coefficients of P can
be obtained similarly to those obtained in (19) and (20).
They can be expressed as follows:

(= 2321 Z?:o Zogj,kgs{
hjk((Ai-i-Ci-i-Di)/Z,D,d) (Ng,Nl, _) (Y,,d)
+ hjx((24; + D;)/2, A, d)g(No, N1, N') by, (Y, d)
+ hj(Bi, B,d)g(No, N1, N')hy (Y3, d)

+ hjr(Di/2,C,d)g(No, N1, N') by (Yi, d) }

aEN Ny)

(26)
Ed 121—0 ZO<] k<3{ _
h]k((A + C; D)/2 D d) (No—i—Nl,Nl,Nl)h,
+ hir((24; + D;)/2,A d) (No + N', Ny, N')h
+h‘jk(BiaBad)g(N0+NI;N17 ) k(}/z;d)
+hjk(Di/2,C,d)g(N0+NI,N1, ) (}fwd)}
-

k(Y'-ud)
k(y;7d)

(27)
with Ny being defined as follows:

(No)m = 0, if N is a variable in G,
9m =Y Np, if Nm isa fized point in G.

Once we have the ¢ and £ values for each patch and
variable point, we combine them to form a linear system
Ax = b. The new locations of the control points in
region IT are obtained by solving this system for z.

9 Implementation & Test Re-
sults

The proposed approach has been implemented in C++
using OpenGL as the supporting graphics system on
an SGI platform. Three test cases are presented here.
These include a rocker arm (Figures 5 and 6), a ventila-
tion control component (Figures 7 and 8) and a marker
cap (Figure 9). These examples are mechanical parts
with holes. Since the boundary representations of these
mechanical parts are closed surfaces with handles, none
of them can be represented by a single trimmed NURBS
surface.

In each example, the original object is shown on the
left and its shape after the constrained scaling process
is shown on the right. In the first and the third cases
(Figures 5, 6 and 9), only one feature is fixed in the
constrained scaling process. These features are shown
in blue. In the second case (Figures 7 and 8), three



Figure 5: Constrained scaling of a rocker arm: before
scaling (left), after sacling (right) with S, =1.3, S, =
128, =1.1.

holes and five holes are fixed in the constrained scaling
process, respectively. Those fixed holes are also shown
in blue even though they can not be seen due to the
direction of projection. It is easy to see that the fea-
tures remain the same in both shape and dimension
after the constrained scaling process in all cases. These
examples represent great challenge in practical appli-
cations because of the complexity of the shape around
the features.

10 Conclusion

A fix-and-stretch based constrained scaling method for
CCSSs is presented. The new surface is constructed
by fixing the the regions containing the features and
stretching the remaining parts until certain conditions
are reached. The stretching process is realized through
an energy optimization process to ensure the resulting
surface reflects the shape and curvature distribution of
the unconstrainedly scaled version of the given surface.
Efficient energy computation techniques and elegant
optimization techniques for regions with extra-ordinary
points have been developed to handle the topological
complexity of a subdivision surface. The new method
is more powerful than the previous method [20] in that
it can handle more complicated shapes; it can be used

Figure 6: Constrained scaling of a rocker arm: before
scaling (left), after sacling (right) with S, = 0.8, S, =
0.85 S. =0.9.

Figure 7: Constrained scaling of a ventilation control
component with three features: before scaling (left),
after sacling (right) with S, =1.0, S, =1.2 5, =1.0.

for most free-form objects as long as a CCSS represen-
tation of the object is available.

The new method can not tolerate scaling factors big-
ger than 1.4. The safe scaling range provided by this
method is between 0.8 to 1.3. This is enough for most
of the reshaping tasks in the automotive industry as
the scaling factors used in the reshaping process there
are usually smaller than 1.2.
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11 Appendix A: Proof of (4)

Let K = MGMTVTVMGTMT. K is a 4 x 4 matrix.
Then E,, can be expressed as

5 ffD S2dudv
[y UMGMTVTV MGT MTUT dudy
[, UKU du

s’i
i
5/

Koo + Koru + Koou? + Kozu3+

Kiou + K11u? + Ki2u3 + Kizu*+

—2 f‘fD K20U2 + K21U3 + K22U4 + K23U5+ dudv
K30U3 + K31’UI4 + K32U5 + K33U6
Koo + Ko11/2 + Ko21/3 + Ko31/4+
1 p1 K101/2+K111/3+K121/4+K131/5+
= §f0 dv

Ks01/3+ K11/4+ K231/5+ Ka31/6+
Ks01/4+ K311/5 4+ K321/6 + K331/7

=1 [(DoKY{ + DiKY{T + DoKY{ + D3KY{)dv
where D and Y are defined in (5).
0,1,2,3, we have

[ (DiKYT)dv

= Jio.1 (D MGMTVTVMGTMTK.T)dv
= D;MGMT ([, ;(VIV)do)MGTMTY"
= D;MGMTDMGTMTYT

Since for each i =

Hence E,, = 1/2%2 (D;MGMTDMGT MTYT).
The other two equations can be proved similarly.

12 Appendix B: Proof of (10)

Note that if N is the set of (2n + 8) control vertices
around the extra-ordinary point (n is the degree of the
extraordinary point, see Figure 3 for an example of
n = 5), then SSE-INT is the set of (2n + 17) control
vertices around the extraordinary point after L levels
of Catmull-Clark subdivision.

Our problem now is to retrieve 4 x 4 vertices from
this vector to form a 4 x 4 matrix Grq (d = 1,2,3).
First, we select 4 vertices to form the first column
of Grq from SST=INT by using pick matrix Py, i.e.
CT = PySSLINT. CT is a column vector. We ex-
tend this column vector to a 4 x 4 matrix by multi-
plying it with a row vector Yy(defined in (5)). The
result is a 4 x 4 matrix: My = (CF,0,0,0). Second,
we select another 4 vertices to form the second column
of Grq from SSE~INT by using pick matrix Py, i.e.
CT = P;;SSE-INT. This is again a column vector.
We also extend this vector to a 4 x 4 matrix by multi-
plying another row vector Y; (defined at (5)). The re-
sult is a 4 x 4 matrix: M; = (0,CT,0,0). Similarly,we
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can generate M» = (0,0,C7,0) and M3 = (0,0,0,CT).
Adding them together,we have (10). (Note: Py is a 4
by (2n+17) matrix, with all the entries equal to zero
except one ”1” each row. The value of d varies from
1 to 3, indicating which regular bicubic B-spline patch
after a subdivision is being considered.)

13 Appendix C: Proof of (11)

First note that

f(U, GLd,GL,d,X, V)

=UMGLsMTXMGLT ,MTVT

—UM(Z] OPd]SSL 1NTY)MTXM

(Ek OPdkSSL INTY ) TMTVT

= EO<] k<3 UM(Py i SSEINTY, )MTX M-
(Pu.SSE—INTY; )TMTVT

= Eo<] k<3 (Y MTXMYk )UMPdJS
SI lNTN(SL 1) ST(Pdk)TMTVT

= Eogj,kgz hir(U,X,d)SETINTN(SE=1)Thi(V, d)

where h;;(U,X,d) and hy(V,d) are defined in (12
And then

Y7o, f(U,GLa,Gra, X, V) | 4F
= ZL 1 ZO<] k<3 th(U X d)
SEELNT N(SE-1)Thy (V. d) / 4L
Zo<] k<3 th(U X d) _
>, St lNTN(SL DT ) 4B (V,d)
= ZOSJ,kSS hjr (U, X d)RNhk(V d)

where Ry is defined in (12). Note that Ry satisfies
(13). But then for each fixed d (d = 1,2,3), we have

Yie1 E(SLa) / 4%
= E;O:l{zfzo f((Al + C’L + Di)/zaGLdaGLd:Da}/;)
+ 370 F((24i + D3)/2,GLa,GLa, A, Y:)
+ E?:o f(Bi,Gra,GLa, B,Y;)
+ Z?:o f(Di/2,GL4,GLa4,C,Y;)} | AF
=Y {7 f((Ai + Ci + Di)/2,Gra,GLa, A, Y:) | 4F
+ 2721 f((2Ai + Di)/2,G1ra,Gra, A, Y:) | 4F
+ Y721 f(Bi,Gra,Gra, B,Y:) | 4*
+ZL L f(Di/2,Gra,Gra,C,Y;) | 4% }
= Ez 0 ZO<] k<3{
hjr((A; + C; + D;)/2,D d)RNhk(Y,,d)
+ h;r((24; + D; )/g A d)RNhk(Y,,d)
+ hjk(Bi,B,d)RNhk(Y,’,d)
+ h;r(D;/2,C, d)RNf_lk(Yi,d)}.

).

The energy of the entire extra-ordinary patch is then
simply the sum for d = 1,2, and 3 which is (11).



