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A parallel implementation of Chebyshev method is presented
for the B-spline surface interpolation problem. The algorithm
finds the control points of a uniform bicubic B-spline surface that
interpolates m x n data points on an m X n mesh-connected
processor array in constant time. Hence it is optimal. Due to its
numerical stability, the algorithm can successfully be used in finite

precision floating-point arithmetic. © 1995 Academic Press, Inc.

1. INTRODUCTION

Modeling the shape of an image or an object usually
requires the technique of parametric curve and surface
interpolation {4]. B-spline curves and surfaces are fre-
quently used in the interpolation process due to their
local property, small energy, and numerical stability
{4, 71. The B-spline surface interpolation process, exten-
sively studied before, is basically a problem of solving a
system of linear equations.*

Due to the block tridiagonal form of the system of lin-
ear equations, a Gaussian elimination method is an opti-
mal sequential algorithm to construct a uniform bicubic
B-spline surface that interpolates a grid of m X n data
points since its time is proportional to /X n. An iterative
algorithm based on the line SOR (SLOR) method has also
been devised [5]. Relaxation in each line of the SLOR
method is performed in parallel by using cyclic reduction
[11]. If n processors are available for the relaxation pro-
cess, the algorithm requires O(m log n) time to find the
control points of a uniform bicubic B-spline curve that
interpolates m X n points. A parallel algorithm on a sys-
tolic array was proposed by Ajjanagadde and Patniak [1].
The algorithm uses the Gauss—Seidel iteration method to
find the control points of the interpolating surface. 1t re-
quires p X n cells for m X n (m = n) data points where p
is the number of iterations specified by the user. It re-
quires 2n + m + p clock cycles to get all the control
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points. More recently, another parallel algorithm has
been proposed by Cheng and Goshtasby {6]. The algo-
rithm is based on a curve interpolation technique and
cyclic reduction. The surface interpolation problem is
split into two curve interpolation steps; each can be car-
ried out in parallel by cyclic reduction. It requires O(log
m + log n) time to find the control points on m X n
processors. None of the parallel algorithms, however, is
the optimal solution yet, as the cost of an optimal parallel
algorithm ((execution time) X (number of processors))
should equal the lower bound O(m X n) of the number of
operations needed to solve the problem sequentially [2].

In this paper, we show that the Chebyshev iterative
method leads to an optimal parallel algorithm on a mesh-
connected processor array. The algorithm requires con-
stant time to find the control points of a uniform B-spline
surface that interpolates m X n points. The number of
processors in the mesh-connected processor array is m X
n. Therefore, the cost of the algorithm is minimal. More-
over, this algorithm has very good numerical properties:
errors due to finite precision floating-point arithmetic are
very small.

The rest of the paper is presented in the following or-
der. In Section 2, we define the problem. In Section 3, a
parallel implementation of the Chebyshev iterative
method for the problem is presented. In Section 4, we
discuss the complexity of the algorithm in infinite preci-
sion arithmetic model. The complexity of the algorithm in
finite precision arithmetic model is studied in Section S.
The concluding remarks are given in Section 6, The Ap-
pendix sketches the proof of results reported in Sec-
tion 5.

2. DEFINITIONS AND PROBLEM FORMULATION

Given a grid of 3D datapoints V, ;, i = 1,2, ...,m, j =
1,2, ..., n, our goal is to find a uniform bicubic B-spline
surface that interpolates the given points. We will follow
the traditional approach to construct such a cubic B-
spline surface, i.e., representing it as a piecewise surface
of (m — 1) X (n — 1) uniform bicubic B-spline patches
whose m X n vertices (corners) interpolate the given data
points, A uniform bicubic B-spline surface with
(m — 1) x (n — 1) patches can be defined as
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m—-1 n-—1

S, v) = D 2 P jsaNia(wN,4(v),

i==2 j=-2

@2.n

where N, (1) are B-spline basis functions of order 4 (or-
der = degree + 1) determined by the u parameter knot
vector (=2, —1, ..., m + 3), N,4(v) are B-spline basis
functions of order 4 determined by the v parameter knot
vector (=2, —1, ..., n + 3), and P, ; are 3D control points.
The parameter range of S(u, v) is [1, m] X [1, n].

To interpolate the given points at the vertices of the
patches, S(u, v) must satisfy S(p, q) = V, forall1 = p <
m and 1 = g < n. This is equivalent to finding P, , for
which

Poig1 +4P, o1 + Py g1 + 4P, + 16P,
+ 4Pp+l,q + Pp—l‘q+l + 4Pp.q+l + Pp+l.q+l (22)
=36V,,, p=1,2,....mq=12,..,n

Since there are more unknows than equations, we need
extra conditions to get (2.2) solved uniquely. Several ap-
proaches can be used to construct additional conditions
[1, 3]. For simplicity, we shall assume that we know the
boundary points P,gand P, »+1, p=0,1,...,m+ 1, Py,
and P14, g = 1,2, ..., n. (This can be done by either
giving extra data points in addition to V, , or following
the approach used in [1] to solve for the control points of
the boundary curves of the interpolating surface. Actu-
ally, the algorithm proposed in the next section can be
used to solve for the control points of the boundary
curves as well.) Then, the equations in (2.2) can be writ-
ten in matrix form as ’

(2.3)

where P = [PT, P, ..., PLIT with P, = [P, , P,,, ...,
P,.),andF = [F[,F}, ... F.I"withF, = [F,;.F,,, ...,
F,.]. Each F, , is a function of V,, and some of the
boundary points, and consequently is a known quantity.
The matrix A is mn X mn block tridiagonal with diagonal
blocks equal to 4B and super- and subdiagonal blocks
equal to B, where B is an # X n tridiagonal matrix with 4
on the main diagonal and 1 on super- and subdiagonals.

3. THE ALGORITHM

The coefficient matrix A in (2.3) is sparse, positive
definite and symmetric. Hence, it suits the Chebyshev
method (see, e.g., [10]) very well.

Let a and b be positive numbers such that the interval
[a, b] contains all eigenvalues of the matrix A. Let P© be
an initial approximation of the solution P = A~'F. Then,
according to Chebyshev method, the (k + 1)st approxi-
mation P&*D of P is given by

Pk+D = PO 4 [pl-1(Ph) — Pk-D) — RK]/q0),

k=012 .. G
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where
RW = AP® — F (3.2)
P =, kD = ,b_;ﬁfk;‘ © — b+ a,
’ 4 1 ’
) (3.3)
W0 Al
q 4 e’

and ¢, is the value of the Chebyshev polynomial of degree
kat (b + a)/(b — a), i.e.,

f1=b+a, fk+1=2b+a  — lLi-rs
b—-a b—a
3.4)

= 1’

k=12, ..

The convergence rate of this method is

N

k
VP VE) jpo B, ()

P — Pl =2

where |||, is the L-norm of the mn-dimensional Euclidean
space E™".
Since the eigenvalues of A are given by

kw)(2+ 117)
+ 1 OSu 1)

l=k=m,1=1=n,

Ay=4 (2 + cos
m
(3.6)

in what follows we take a = 4 and b = 36. As an initial
approximation P we propose wF for some special 0 <
w < 1, see (4.3) and (4.7) in Section 4. F was chosen as
the initial approximation in [1] based on the fact that P is
relatively close to F (as a result of the convex hull prop-
erty of B-spline surfaces). However, such a choice
results in slightly longer iterative process, as we shall see
in Section 4.

We will consider a model of a synchronous m x n
mesh-connected processor array as given in [9]. The pro-
cessor array is denoted by M[1 ... m, 1 ... n]. Each pro-
cessor at location (i, j), ] =i=m, 1 < j =< n, is denoted
by M[i, jl. Processor M[i, j] is directly connected to its
neighbors M[i, j — 1], M[i — 1, jl, M[i + 1, j] and
M[i, j + 1], provided they exist. All mn processors work
in parallel with a single clock, and they all run the same
program. In one step a processor can communicate with
its directly connected neighbors only. The communica-
tion includes sending a data item to and receiving a data
item from its neighbors. Within each step, a processor
can also perform some computation in addition to com-
municating with its neighbors. The computing time is de-
fined to be the number of parallel steps times the number
of operations performed within each parallel step.

The algorithm starts with initializing each processor

Ml[i, j1 with three pieces of information: F,;, P}
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(= wF;;), and s, the number of iterations required to
reach a user specified error tolerance ¢. The total compu-
tation requires 2s steps: two steps for each iteration. By
the end of step 25, M[i, j] contains the kth approximation
of P, ; which satisfies the condition

[P — P,

PO —Pl,<e or
” ”2 “P”z

= g,

depending on whether the absolute or relative error crite-
rion is used. Since the operations performed by each pro-
cessor are the same, we shall discuss them for one pro-
cessor only. Furthermore, although points are used in
our discussion, it should be understood that the algorithm
is performed for one component of the points only; the
computation for the other two components is the same.

The computation is performed as follows. During the
(k + I)st iteration, & = 0, the computation required for
PV is given by

P(k+|) P(k) + [r(k lJ(P(I\) ngj—l)) (P'(k)lj
+ 495“,, + P{.ﬁ’, o1+ APR,+ 4Pf"}
p (k) p (3.7
l+lj) + P 1.j+1 + 4P1j+| 1+]j+l)
- F. lig®.

This will be achieved in two steps: steps 2k + 1 and 2k +
2. In step 2k + 1, M[i, j] computes the following items:

afkj’ = (P:li) 1.j + Pfﬁjl )) + 4P$k}a

k) — - [3 (k-1
B( } = plk l)(Pg'} — Pi,j ))’ q(k).

r*=1 and g are defined in (3.3). The computation of !}
requires communication of M[i, j] with its horlzontally
connected neighbors, i.e., sending a copy of P{*) to each
of its horizontal neighbors M[i -1, jland M[i + 1, j],
and receiving a copy of P, ; and P[’;’l Jfrom M[i — 1, j]
and M{i + 1, j], respectively. This situation is 111ustrated
in Fig. 1a where dotted lines indicate that no communica-
tion is required between vertically connected processors.
In step 2k + 2, M[i, j] computes the following items:

— k k k
8N = al_| + ol + 40,

(3.8)
Pfkj) + (IB(U

j 85‘5})/q(k)-

The computation of 8 requires communication of
MIi, j] with vertically connected neighbors, i.e., sending
a copy of af*) to each ofM[z j — 1] and M[i, j + 1] and
receiving a copy of a,J ; and ot +, from M([i, j — 1] and
M(i, j + 1], respectively. The situation is depicted in Fig.

1b. The second value of (3.8) equals the right-hand side of
(3.7). Therefore, by the end of step 2k + 2, M([i, j] con-
tains the (k + 1)st approximation of P; ;.

To compute P**1, each processor needs to perform 18
arithmetic operations: 8 multiplications and 10 additions.
Among them, 4 multiplications and 1 addition are needed
to compute r*=" and g'*. One can save one multiplica-
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FIG. 1. Communication during odd steps (a) and even steps (b).

tion per iteration by using a special version of the Che-
byshev method due to WozZniakowski; see [12]. With ini-
tial values

_a+b _ (b = a)z _
¢c=— 20, d= 3 = 64,
+ b+ 2V
7" a+ b+ 2Vab 16,
4
r(—l) =9 q(o) =
2d + b ab
0 — 2% _ ) = —
r p 6.4, ¢ + T 13.6,
2Vab d
(1) = ==
o i1 bg 2.4,
we have for k = 2,3 ...
PeD = digh-D g = ph-hgk-lijgx g = gk — b

The evaluation of ¢, is no longer required. Most impor-
tantly, this approach is numerically stable, as proven in
[12], which makes the Chebyshev method very appeal-
ing.

4. COMPLEXITY WITH INFINITE PRECISION

The number of operations performed in each parallel
iteration step equals 17. Hence, the complexity of the
algorithm with infinite precision equals 17 X s where s is
the number of iterations. Depending on whether absolute
or relative error criterion is used, the number s is given
by (4.5) or (4.9) when P©@ = wF with optimally chosen w;
see (4.3) or (4.7). We begin with the absolute error crite-
rion. Note that

”P(O) - PHZ = HWF - A_IF”2 = ”(WI - A_])FNZ 4.1)
=< |wi — AL '
Hence, due to (3.5),
[P — P, = 24+ 1P — P = 27wl — A~'|F]L.
4.2)
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Since the eigenvalues A(A~!') of A~! are bounded by 1/36

and 1/4, we have the following inequality for the eigen-

values of wl — AL
AwI = A7N| = [w — A(ATY)|

max(jw — 1/4], |w — 1/36)).

AN

The smallest value of the right-hand side occurs when

w = 5/36. (4.3)

Then |wl — A", =< |5/36 — 1/4| = 1/9, and (4.2) yields

2—k+l
p® — P, = =5~ .. (4.4

This shows that for P®® = S5F/36, the Chebyshev method
reaches the error tolerance ¢ with

2|IF
s~ [iogs 2]

4.5)
The right-hand side of (4.5) does not depend on m and n,
it depends on ¢ and ||F|; only. |[F||; can be estimated in the
input phase. Therefore, as long as the norm of F and the
error tolerance are fixed, the number of iterations re-
quired by the algorithm is a constant and, consequently,
the execution time of the algorithm is O(1).

If P® = F were chosen as the initial approximation, the
algorithm would require more iteration steps to reach the
user specified error tolerance. In this case, we would
have

[P — P, = |F — A™'Fl, = [[d = A"
= |Ir = A~

Since |[I — A7, = 35/36, |P® — P|, = 27%*1(35/36)|F|..
Hence, to reach the user specified error tolerance, s =
[log2(35]F|]2/18¢)] would be required. Note that this is
larger than s in (4.5) by at least 3.

It should be pointed out that other iterative methods
can be used in the algorithm as long as the number of
iterations does not depend on the size of the problem.
Nevertheless, the Chebyshev method seems to be the
best choice for this particular problem in that the rate of
convergence of the Chebyshev method is much faster
than the rate of many other methods. For instance, it is
possible to show (following a similar approach as above)
that the SOR method (with the relaxation value being 1/
20, the best case) provides the following rate of conver-
gence:

1(4\*
P — By < 1 (2) 1.

Therefore, after four iterations, the error in (4.4) would
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only be 1.4% of ||F|,, while the error in SOR is still 4.5%
of [[Fl..

We now proceed with the relative error criterion. Note
that with PO = wF, we have

[P© — Pl = [|[wF — Pl; = (wA = DP|}; < [wA — I|L[|P[..
(4.6)

The eigenvalues A(/ — wA) of wA — I are bounded by
max(|1 — 4w|, |1 — 36w|). Moreover,
w = 1/20 4.7)

minimizes the above maximum with || — (1/20)A|, < 4/5.
Therefore, (3.5) and (4.6) yield

[P® ~ P, 4

= 27kt -, 4.8)

Lq5 5
This shows that, with P@ = F/20, the Chebyshev method
reaches a specified relative error tolerance ¢, in s steps
with

5= [logz 5%,] 4.9)

In particular, to get k correct binary digits, £ + 2 itera-
tions would be sufficient.

5. COMPLEXITY WITH FINITE PRECISION

In this section, we analyze the complexity of the algo-
rithm when the operations are performed in a finite preci-
sion floating-point arithmetic environment with a unit
roundoff error u. For simplicity, we assume rounding in
the arithmetic operations. Hence, ¥ = 27", where m is
the number of binary digits in the mantissa of a floating-
point number.

Let P&*D be the values of P4*) computed in floating-
point arithmetic after k + 1 iterations of the algorithm and
let &%+ be the corresponding error

é(k+]) = P — P(k+l)'

We have the following upper bound on the error when
PO = (1/20)F:

k1| < 2-Kje®], + 164 ul[Pll, = 27%*2/5 + 164 w)|P|s.
5.1)

The proof of (5.1) takes more than 10 pages of tedious
estimations. Hence, we only outline it in the Appendix.

The bound (5.1) provides us with two pieces of infor-
mation. First, the estimate of the relative error [é**")||,/
[Pl converges to 164u when k tends to infinity. This
means that one can solve the problem to within m — 9
most significant binary digits of the exact solution. Sec-
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ond, to approximate P by P® that carries, r, r < m — 9,
correct binary digits, k should satisfy 2-%714/5 +
2 m164 = 27*Y Hence, we need at most k iterations
withk=r+4ifr=m-9,k=r+3ifr=m— 10, and
k=r+2ifr=m-11.

6. CONCLUDING REMARKS

The algorithm presented in this paper can easily be
realized since communication required is simple and
computation for all the processors is controlled by a cen-
tral clock only. It is especially suited for interpolation
problems with large number of interpolation points and
fixed problem size. The algorithm is also appealing for its
small numerical errors.

The computation architecture used in the algorithm
could also be used in other computation-extensive prob-
lems in graphics and geometric modeling. For instance, a
mesh-connected processor array seems to be well suited
for B-spline surface evaluation using knot insertion.
However, it needs further study.

APPENDIX

We sketch the proof of (5.1) here. The proof is com-
posed of four major steps; each step consists of relatively
straightforward, yet lengthy estimates. We will give a
sketch of each step only.

In the following, a quantity computed in finite-preci-
sion floating-point arithmetic will be capped witha ****" to
distinguish it from the exact quantity. For instance, the
computed values of o™, r®, and ¢® will be denoted by
W, F® and ¢, respectively.

Step I. Lete®, ¢4k and ¢'"® be the relative errors
in computing r%, g'¥, and o, i.e.,

e(r.kl — |r”" — ;(kil/lr(kjl,

@k = |Gk — G|tk
e o G *®|/|oW).

etk = | gk — Gh|/|gW),

Then e < u, eV = 2u, 4 =0, ¢V =y, eV =y,
and for k = 2

ek < (2 + u < 3u,

25+ 1]

ek < (l + ) u <2u, and

o
2%+ 4+ ]

ek = 2u.

Step 2. Given a vector F, the error § in computing the
residual y = AP - F satisfies

I8l = lly = %Il = u(112|P| + |[F]D.

Step 3. Let ¢ be the rounding error due to floating-
point operations in (k + 1)st step. Then
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, 112 u 2u + e9h
el = = o {1+ L52) o o+ 2
pk=1)
+ (Su + e+ + elah) Py [P — pU-h).
Since |[P¥)| < |le¥|| + ||P|, it follows that
1
IE¥) = wlP|A© + Bl —55 + [le@B%
+ ”e(k) — e”"‘”l'C“",
where
112
AW =1+ —q(—k), (AW e 8),
(¢.k)
B — 4 + 2u + 36e - + 1717211‘ (B""’—?ﬁu),
q 4

k—1)
r
ch = g™ (Su + er+=h + elak)y, (CP - 2u).

Step 4. This step uses a result of WoZniakowski
(Thm. 3.1 on p. 197 of [12]) which states that

k
ekt < 2K + 2} (2 — Bi-)[[Wi—i(A)]

+ (Bivr — DR A - 127
with
S, 5214200 s e
R T SRS R L
k—i+1
[Ri-i(A)| = PR
k—i

Since the right-hand side increases with 8;,,’s, we over-
estimate it by taking 8;., = 2. Then

k
e = 274 + 2 31 274k = i+ DI,
i=0

Using the estimate on [|{"]| obtained in Step 3, one can
verify that indeed

4
ekt < 2-4e@|| + 164 u |P| < (2”" 3t 164u)||P|

as claimed.
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