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ABSTRACT
An elegant and efficient mesh clustering algorithm is pre-
sented. The faces of a polygonal mesh are divided into dif-
ferent clusters for mesh coarsening purpose by approximat-
ing the Centroidal Voronoi Tessellation of the mesh. The
mesh coarsening process after clustering can be done in an
isotropic or anisotropic fashion. The presented algorithm
improves previous techniques in local geometric operations
and parallel updates. The new algorithm is very simple but
is guaranteed to converge, and comes out better approxi-
mating meshes with the same computation cost. Moreover,
the new algorithm is suitable for the variational shape ap-
proximation problem with L2,1 distortion error metric and
the convergence is guaranteed. Examples demonstrating ef-
ficiency of the new algorithm are also included in the paper.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling —Physically based modeling

Keywords
Mesh Clustering, Centroidal Voronoi Tessellation, Shape Ap-
proximation

1. INTRODUCTION
3D mesh models are used in many important areas such as
geometric modeling, computer animation, and CAD. With
the availability of powerful laser scanners, large and dense
meshes are easily acquired from physical world. However,
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since the full complexity of such models is not always re-
quired, coarsening a dense mesh, i.e., replacing the original
mesh with a simpler but close enough mesh, is a necessary
pre-processing step in many applications. Many mesh coars-
ening techniques have been presented, including the global
optimization method [10, 18] and remeshing for mesh coars-
ening [22, 15, 13, 8].

Mesh clustering is to partition the faces or vertices of the
mesh into different regions. Generally, these regions are re-
quired to be nonoverlapping and connected. One major ap-
plication of the clustering technique is for mesh coarsening.
Such a method builds the approximating mesh based on the
clustering of the dense mesh. In mesh coarsening, clustering
may not be explicitly required in a greedy clustering tech-
nique, like mesh decimation. A decimation method creates
implicit partitions of the mesh through greedy and repeat-
edly collapsing mesh faces or vertices [6, 9, 17]. The resulting
mesh is always sub-optimal [2]. The other clustering method
for mesh coarsening is to construct the mesh clusters explic-
itly. The new mesh clustering technique, also designed for
mesh coarsening, falls into this category.

There are quite a few papers discussing mesh approxima-
tion based on explicitly constructing clusters. Clustering by
approximating the Centroidal Voronoi Tessellation (CVT)
[3] on triangular meshes is first discussed in [23]. After con-
structing the clusters, the mesh is uniformly coarsened based
on the clusters. Adaptive coarsening of a mesh based on
clustering from Centroidal Voronoi Tessellation is presented
in [25]. An extension from uniform mesh coarsening [23] to
anisotropic mesh coarsening is discussed in [24]. A theo-
retical framework of variational shape approximation based
on optimal mesh clustering with respect to some distortion
error metric is presented in [2]. Especially, optimal clus-
tering using L2,1 metric faithfully captures the anisotropic
nature of the mesh. A hierarchical face clustering technique
is developed in [19]. Many applications such as collision de-
tection, surface simplification and multiresolution radiosity
benefit from this hierarchical clustering technique. Cluster-
ing faces in a set of characteristic regions to build a higher-
level description of mesh geometry is explored in [12, 21, 16,
7]. Accelerating general iterative clustering algorithms for



Figure 1: Clustering and approximation results on a hand model: the left-most figure shows the 500 clusters
generated by approximating CVT on the mesh; the second from left figure is the uniformly coarsened mesh;
the third from left figure has 98 clusters in different colors while using L2,1 metric for clustering; the right-most
figure is the approximating polygonal mesh.

meshes on GPU is discussed in [11].

This paper is inspired by the work presented in [23, 24, 2].
The goal here is to do clustering by approximating con-
strained Centroidal Voronoi Tessellation [4] or Centroidal
Voronoi Tessellation [3] on a polygonal mesh. Starting with
an initial partitioning of the mesh, the new algorithm iter-
atively tests the boundary edges between different clusters
to update the cluster configuration until the boundary edges
do not change any more. This boundary testing algorithm is
also discussed in [23, 24]. But we derive a simpler algorithm
by presenting a more rigorous mathematical analysis. The
new algorithm is intuitive in that it only needs to compare
the distances from one face centroid to centroids of adjacent
clusters. The new algorithm is also extended for optimal ge-
ometric partitioning with respect to L2,1 in [2]. The exciting
result is that the new algorithm is guaranteed to converge
while the algorithm based on Lloyd method in [2] is not. In
summary, the contributions of this paper include:

1. a simpler algorithm which only needs to compare dis-
tances is derived for constructing clusters on a polyg-
onal mesh by approximating Constrained Centroidal
Voronoi Diagram or Centroidal Voronoi Diagram;

2. the new algorithm updates cluster configurations af-
ter comparing all boundary edges, not after comparing
each boundary edge. This updating scheme improves
the quality of the output coarse mesh.

3. the new algorithm for clustering with L2,1 metric is
guaranteed to converge. Sharing the same advantages
of clustering with Centroidal Voronoi Tessellation meth-
ods, the new algorithm is fast.

The remaining part of the paper is organized as follows: Sec-
tion 2 gives some basics on Centroidal Voronoi Tessellation
and its extension; Section 3 presents an analysis and the
new clustering algorithm; Section 4 discusses the boundary
testing algorithm for clustering with L2,1 metric; Section 5
proposes some strategies to make implementation more ef-
ficient; Section 6 gives applications of the new algorithm;
test results are shown in Section 7; the conclusion is given
in Section 8.

2. CENTROIDAL VORONOI TESSELLATION
Voronoi diagrams or Voronoi tessellation are essential struc-
tures in computational geometry and have been used in
many important applications [20]. Given a domain Ω in
�n and a set of points {zi}k

i=1, the corresponding Voronoi
diagram {Vi}k

i=1 is a partition of Ω such that:

(1) Vi ∩ Vj = ∅ and ∪k
i=1V i = Ω , and

(2) Vi = {x ∈ Ω | |x − zi| < |x − zj | for j = 1, 2, .., k, j �= i}

{zi}k
i=1 are called the generators and {Vi}k

i=1 the Voronoi
regions.

Centroidal Voronoi Tessellation (CVT) is an extension of
Voronoi Tessellation by requiring that the generators are
also the mass centroids of the Voronoi regions. Given a
density function ρ(x) on V , the mass centroid z∗ of V is
defined as

z∗ =

∫
V

xρ(x)dx∫
V

ρ(x)dx

Specifically, CVT of Ω is a minimizer of the energy functional
[3] :

F (z) =

n∑
i=1

∫
Vi

ρ(x)|x− zi|2dx (1)

where zi ∈ Ω.

Constrained Centroidal Voronoi Tessellation [4] is the re-
striction of CVT to a surface. If a density function ρ(x) is
defined on a surface S, we can define the constrained mass
centroid zc of a region V ⊆ S as the solution to the following
minimization problem:

min
z∈S

∫
V

ρ(x)|x− z|2dx (2)

A Voronoi Tessellation on a surface S is a Constrained Cen-
troidal Voronoi Tessellation (CCVT) if and only if the gen-
erators zi associated with each Voronoi region Vi are also
the constrained mass centroid of Vi. Several applications of
CCVT can be found in [4]. Furthermore, CCVT of surface
S is also the minimizer of an energy functional similar to



the one defined in eq. (1) except now zi ∈ S [4]. Note
that although x and zi are points of the surface S, CCVT
uses the Euclidean distance instead of the geodesic distance.
This minimization property is very important. We will take
a deeper look of it in a later section. Several algorithms for
constructing CVT and CCVT, such as the Lloyd method
and k-means method, are presented in [3, 4].

In this paper, we will show how to construct discrete CCVT
and CVT on a polygonal mesh. Discrete CVT was thor-
oughly investigated in [23, 24]. Here, we will give a rigorous
analysis of constructing CCVT on a polygonal mesh. We
choose analyzing discrete CCVT because discrete CVT can
be viewed as a special case of discrete CCVT. In fact, most
of the examples presented in this paper are implemented
to construct discrete CVT on triangular meshes. We first
present our derivations below, then point out the differences
from those in [23, 24].

3. DISCRETE CONSTRAINED CENTROIDAL
VORONOI TESSELLATION ON A POLYG-
ONAL MESH

Given a polygonal mesh M and a cluster number n, we
will try to divide the faces of M into n connected sets of
faces Vi (i = 1, 2, . . . , n) by constructing a CCVT on M .
These clusters {Vi} form a discrete CCVT on the mesh M .
Although discrete CCVT can be defined for any polygonal
mesh, we will concentrate on triangular meshes in this pa-
per.

In the continuous setting, CCVT is the minimizer of an en-
ergy functional similar to the one defined in eq. (1). For the
discrete version of CCVT on a triangular mesh M , the re-
gion Vi is a connected collection of triangles. We can rewrite
the energy functional as

F (z) =

n∑
i=1

( ∑
Tk∈Vi

∫
Tk

ρ(x)|x − zi|2dx
)

where Tk’s are triangles in Vi. In this paper, we only consider
the uniform case, i.e., ρ(x) = 1. Then the energy functional
is

F (z) =

n∑
i=1

( ∑
Tk∈Vi

∫
Tk

|x − zi|2dx
)

(3)

In fact, the following equation holds

∫
Tk

|x − zi|2dx = |xk − zi|2|Tk| + |Tk|
12

3∑
j=1

|xj
k − xk|2 (4)

where |Tk| is the area of triangle Tk with vertices xj
k(j =

1, 2, 3) and xk is the centroid of Tk. The derivation of this
formula is shown in the appendix. Note that the second term
on the right hand side is a constant for each triangle. We
will use σk to denote this term for triangle Tk. Substituting
the integral in eq. (3) with eq. (4), we have

F (z) =
n∑

i=1

( ∑
Tk∈Vi

|xk − zi|2|Tk|
)

+
∑

Tk∈M

σk (5)

The last constant item is not essential in subsequent work,
hence, will be omitted for F (z). The constrained mass cen-

troid zi of Vi on a continuous surface S is defined as a so-
lution to the minimization problem defined in eq. (2) with
V replaced with Vi. For discrete CCVT on M , we can use
the same argument as in reformulating F (z) to rewrite the
minimization problem as:

min
z∈M

( ∑
Tk∈Vi

|xk − z|2|Tk| +
∑

Tk∈Vi

σk

)

The last constant item is not essential in the minimization
process and, hence, will be omitted too. Furthermore, the
above equation without the constant can be simplified as

min
z∈M

( ∑
Tk∈Vi

|xk − z̄i|2|Tk| +
∑

Tk∈Vi

|z̄i − z|2|Tk|
)

(6)

where z̄i =
∑

Tk∈Vi
|Tk|xk∑

Tk∈Vi
|Tk| is the mass centroid of Vi.

A proof of eq. (6) can be found in the appendix. Thus the
constrained mass centroid of Vi is the point on M that is
closest to its mass centroid z̄i. Eqs. (5) and (6) are the
counterparts of eqs. (1) and (2) in the discrete case. Before
we describe the algorithm, two important properties have to
be highlighted first.

Property 3.1. Let {(Vi, zi)} be the current cluster con-
figuration where zi is the constrained mass centroid of Vi,
and for each triangle Tr ∈ Vi’s, let xr be its centroid. If
|xk − zq |2 < |xk − zp|2 for some triangle Tk ∈ Vp and Vq

adjacent to Vp, then

F ′(z) < F (z)

where

F ′(z) =
n∑

i=1

( ∑
Tk∈V ′

i

|xk − z′
i|2|Tk|

)
, (7)

z′
i is the constrained mass center of V ′

i and

V ′
i =

⎧⎨
⎩

Vi i �= p, q
Vp − {Tk} i = p
Vq ∪ {Tk} i = q .

Note that since |xk − zq |2 < |xk − zp|2, it is clear that∑
Tj∈Vp−{Tk}

|xj − zp|2|Tj | +
∑

Tj∈Vq∪{Tk}
|xj − zq |2|Tj |

<
∑

Tj∈Vp

|xj − zp|2|Tj | +
∑

Tj∈Vq

|xj − zq|2|Tj |.

From the minimization property of the constrained mass
centroid z′

i, the following inequality holds:∑
Tj∈V ′

t

|xj − z′
t|2|Tj | ≤

∑
Tj∈V ′

t

|xj − zt|2|Tj | , t = p, q

Combining these two steps, F ′(z) < F (z) follows readily.

Property 3.2. Let {(Vi, zi)} be the current cluster con-
figuration, and triangles Tk ∈ Vp and Ts ∈ Vq with cen-
troids xk and xs, respectively, share a common edge. If



Figure 2: Illustration of 4 cases in distance comparison. The presence of an arrow indicates direction of the
movement after the comparison. These are cases 1, 2, 3 and 4 from left to right in that order.

|xk − zp|2 > |xk − zq |2, |xs − zq |2 > |xs − zp|2 and |xk −
zp|2|Tk|+ |xs −zp|2|Ts| < |xk −zq |2|Tk|+ |xs −zq |2|Ts| then

F ′(z) < F (z)

where F ′(z) is defined in eq. (7).

This property can easily be proved following an argument
similar to that of property 3.1. In fact, reassigning either Tk

or Ts will lower the value of the energy functional F (z). In
a greedy spirit, we simply choose the smaller one, which is
reflected by the third given inequality. One can not simply
assign Tk to Vq and Ts to Vp because the result could violate
the connectivity requirement for clusters.

3.1 Energy minimization
Recall that a discrete CCVT of a triangular mesh M is a
minimizer of the discrete energy functional (5). In the fol-
lowing we propose an algorithm to iteratively reduce the
value of F (z) until a limit point is reached. The main idea
of the algorithm is to update the clusters by comparing dis-
tances from triangle centroids of a cluster to mass centroids
of adjacent clusters. The triangles that have to be considered
are just boundary triangles, i.e., triangles sharing a cluster
edge. A mesh edge is called a cluster edge if it is shared by
two triangle faces of different clusters. The distance com-
paring procedure is stated below.

Let edge elr be a cluster edge in the current cluster configu-
ration {(Vi, zi)}. elr is shared by triangles Tl and Tr, where
Tl ∈ Vp and Tr ∈ Vq are in different clusters. Let xl and xr

be the centroids of Tl and Tr, respectively. Denote |xl−zp|2,
|xl−zq|2, |xr −zp|2 and |xr −zq|2 with dlp, dlq, drp and drq,
respectively. We need to compare dlp with dlq , and drp with
drq, totally four cases. Figure 2 illustrates these 4 cases.

1. dlp ≤ dlq and drp ≥ drq.
Do nothing. This is exactly what the convergent state
should be.

2. dlp ≤ dlq and drp < drq .
Move Tr to Vp. According to property 3.1, this move-
ment lowers the value of the energy functional F (z).

3. dlp > dlq and drp ≥ drq .
Move Tl to Vq. The new value of the energy functional
F (z) will be lower, according to property 3.1.

4. dlp > dlq and drp < drq .
One more test is needed to decide which triangle should
be moved.

- If dlp|Tl|+drp|Tr| < dlq|Tl|+drq|Tr|, move Tr to
Vp.

- Otherwise, move Tl to Vq.

The value of the energy functional F (z) will be lower
after the movement, according to property 3.2.

Based on this distance comparison process for a single it
cluster edge, one can derive an algorithm which updates the
mass centroids of the clusters immediately after finishing the
above comparison process for each cluster edge. This algo-
rithm should work because the energy functional decreases
after the distance comparison process for each cluster edge.
The problem with this algorithm is, it involves too many
mass centroid updating steps for clusters. Instead, we pro-
pose an algorithm which would update the mass centroids
of the clusters only after we finish distance comparison for
all the cluster edges in the current cluster configuration. We
call such a scheme configuration-wise updating. Correctness
of such an approach is verified below.

Let {(Vi, zi)} be the current cluster configuration. Before
the distance comparison process starts, two triangle sets V +

i

and V −
i are attached to each cluster Vi to record informa-

tion during the distance comparison process. V +
i records

triangles not belonging to Vi initially but are moved to Vi

somewhere during the comparison process. V −
i records tri-

angles belonging to Vi initially but are moved to other clus-
ters somewhere during the comparison process. Note that
if Tk ∈ V +

i then there exists a j such that |xk − zi|2 <
|xk − zj |2. And if Tk ∈ V −

i then there exists a j such that
|xk − zj |2 < |xk − zi|2. It is clear that V +

i ∩ V −
i = ∅. After

the distance comparison process is done for all cluster edges,
the new cluster V ′

i can be written as

V ′
i = (Vi ∪ V +

i ) − V −
i

We claim that the new energy functional is smaller, i.e.,
F ′(z) < F (z). This is shown below:

F ′(z) =
n∑

i=1

( ∑
Tk∈V ′

i

|xk − z′
i|2|Tk|

)

<

n∑
i=1

( ∑
Tk∈V ′

i

|xk − zi|2|Tk|
)

=
n∑

i=1

( ∑
Tk∈Vi−V −

i

|xk − zi|2|Tk| +
∑

Tk∈V +
i

|xk − zi|2|Tk|
)

<
n∑

i=1

( ∑
Tk∈Vi−V −

i

|xk − zi|2|Tk| +
∑

Tk∈V −
i

|xk − zi|2|Tk|
)

= F (z)

where z′
i is the constrained mass centroid of V ′

i and zi is the
constrained mass centroid of Vi. The first inequality follows



Figure 3: The left figure has 500 clusters. The right figure is a coarsened mesh by CVT.

from optimality of the constrained mass centroid, and the
second inequality follows from properties of V +

i and V −
i .

Thus the new energy functional decreases after the one-time
updating.

The constrained mass centroid zi of the cluster Vi is the
closest point from M to the mass centroid z̄i. z̄i plays an
important role in getting zi. In the following we derive a
recursive formula to update the mass centroid z̄i:

z̄′
i =

∑
Tj∈V ′

i
|Tj |xj∑

Tj∈V ′
i

|Tj |

=

∑
Tj∈Vi

|Tj |xj+
∑

Tj∈V
+
i

|Tj |xj−
∑

Tj∈V
−
i

|Tj |xj∑
Tj∈V ′

i
|Tj |

=

∑
Tj∈Vi

|Tj |∑
Tj∈V ′

i
|Tj | z̄i +

∑
Tj∈V

+
i

|Tj |−
∑

Tj∈V
−
i

|Tj |∑
Tj∈V ′

i
|Tj | var(z̄i)

(8)
where

var(z̄i) =

∑
Tj∈V +

i
|Tj |xj − ∑

Tj∈V −
i

|Tj |xj∑
Tj∈V +

i
|Tj | − ∑

Tj∈V −
i

|Tj |

is the variation of the mass centroid zi. If the denomina-
tor equals zero, the new centroid will be computed directly.
These are what we will record during the distance compari-
son process for cluster edges.

The above comprehensive analysis induces an efficient clus-
tering algorithm. With a valid initial cluster configura-
tion, we perform distance comparison for each cluster edge
and record the centroid variations of adjacent clusters at
the same time. After completing the distance comparison
process for all cluster edges, we update the mass centroids
of clusters using eq. (8) and update the cluster edge set.
This process is iterated until the cluster edge set no longer
changes.

It is obvious that the energy functional F (z) has a global
minimum on the triangular mesh M . As F (z) decreases
strictly after each configuration-wise updating, it is guaran-
teed to converge to a limit point. But the ”minimum” it
achieves might not be the global minimum of F (z). For our
clustering goal, it doesn’t matter much. The limit cluster
configuration always gives a very good clustering of M .

Remark: Although our results are for discrete CCVT on
M , there are parallel results for discrete CVD on M ⊂ �3.

Because the mass centroid z̄i =
∑

Tk∈Vi
|Tk|xk∑

Tk∈Vi
|Tk| of a cluster Vi

on a triangular mesh M can also be viewed as a solution to
the minimization problem

min
z∈�3

∑
Tk∈Vi

|xk − z|2|Tk|

This is true because we have∑
Tk∈Vi

|xk − z|2|Tk| =
∑

Tk∈Vi

|xk − z̄i|2|Tk|+
∑

Tk∈Vi

|z̄i − z|2|Tk|

Thus it is obvious that z̄i is the solution to this minimization
problem. We present the approximated results by CVT on
the bunny model in Figure 3. The discrete CVT method
runs much faster than the discrete CCVT method because
the CCVT method needs to find the closest points in each
iteration. Our examples in this paper are mainly the results
from the discrete CVT method.

Approximation of CVT on triangular meshes is also thor-
oughly discussed in [23, 24]. Especially, anisotropic approxi-
mation of CVT is also presented in [24]. The new algorithm
is different from those in [23, 24] in two folds. First, the
new algorithm has a simpler local geometric operation for
cluster boundary test, namely, distance comparison. The
methods in [23, 24] involve computation of certain terms
of the energy functional, i.e. Liso,i = |zi|2 ∑

Tk∈Vi
|Tk| −

2zT
i

∑
Tk∈Vi

|Tk|xk for each cluster Vi in [24]. Their algo-
rithm for Liso,i works as follows. For each cluster edge whose
adjacent triangles are Ti ∈ Vp and Tj ∈ Vq, their algorithm
computes Liso,p +Liso,q for 3 cases: 1) Ti ∈ Vp and Tj ∈ Vq;
2) Ti ∈ Vp and Tj ∈ Vp; 3) Ti ∈ Vq and Tj ∈ Vq. The
algorithm does the reassignment according to the minimum
Liso,p + Liso,q of the 3 cases. The involved computation is
less intuitive and lack of geometric meanings. Second, the
new algorithm updates the cluster configuration after com-
paring all the cluster edges, while those algorithms in [23,
24] update the clusters after comparing each cluster edge.
The experimental differences will be discussed in Section 6
(Applications). In addition to the above two differences, the
new algorithm is also applicable to the variational shape ap-
proximation problem in [2], which will be discussed in the
next section.

4. BOUNDARY TESTING ALGORITHM FOR
CLUSTERING WITH L2,1 METRIC



A novel metric L2,1 is introduced for geometric partitioning
of a triangular mesh M in [2]. A geometric partition of M
consists of a set of connected collections of triangles {Ri}n

i=1

such that Ri ∩ Rj = ∅ (i �= j), ∪n
i=1Ri = M and Ri is

connected. For each region Ri, we can define a proxy plane
Pi = (Xi,Ni), where Xi is the average point of the centroids
and Ni is the average normal of the triangles in Ri. Given
a region Ri and its associated proxy plane Pi, the L2,1 for
Ri is defined as :

L2,1(Ri, Pi) =

∫ ∫
x∈Ri

|n(x) − Ni|2dx

where n(x) is the normal of x ∈ Ri. For triangular mesh, it
can be precisely written as

L2,1(Ri, Pi) =
∑

Tk∈Ri

|nk − Ni|2|Tk|

where nk is the unit normal of triangle Tk and Ni is the
normalized vector of

∑
Tk∈Ri

nk|Tk|.

Based on the L2,1 metric, an optimal geometric partition of
M and a given partition number n can be defined as the
minimizer of the distortion error:

E(M, P ) =
n∑

i=1

L2,1(Ri, Pi)

The advantage of using L2,1 metric for shape approximation
is thoroughly discussed in [2], i.e. anisotropy capturing. An
algorithm for constructing an optimal geometric partition is
also proposed in [2]. This algorithm always produces a good
partition of M , but it is pointed out in [2] that it is not
guaranteed to converge. Here, we develop a different algo-
rithm for constructing an optimal geometric partition which
minimizes the distortion error. This algorithm is based on
boundary testing and distance comparison. It is very fast
and convergent.

Before proving convergence of the algorithm, we explore the
minimization property of Ni of the proxy plane first. Pre-
cisely, Ni is the solution to the minimization problem:

min
|N|=1

∑
Tk∈Ri

|nk −N|2|Tk|

Note that, similar to eq. (6), we have
∑

Tk∈Ri

|nk−N|2|Tk| =
∑

Tk∈Ri

|nk−Ni|2|Tk|+
∑

Tk∈Ri

|Ni−N|2|Tk|

where Ni =
∑

Tk∈Ri
nk|Tk|∑

Tk∈Ri
|Tk| . And it is obvious that

|Ni − Ni|2 = min
|N|=1

|N − Ni|2

Thus the minimization property of Ni follows. As far as
a geometric partition is concerned, a region of a geomet-
ric partition is nothing but a cluster as we have discussed
in the previous section. Thus boundary edges between dif-
ferent regions are just like cluster edges between different
clusters. We will use the term cluster edge here too. Then
for each cluster edge, there are also two properties similar to
properties 3.1 and 3.2 for discrete CCVT.

Property 4.1. Let {(Ri,Ni)} be the current geometric
partition, and triangle Tk ∈ Rp with the unit normal nk. If
|nk − Np|2 > |nk −Nq |2 for some Rq adjacent to Rp, then

E(M,R′) < E(M, R)

where E(M, R′) =
∑n

i=1

( ∑
Tk∈R′

i
|nk −N′

i|2|Tk|
)

, N′
i is

the normalized vector of Ni of R′
i and

R′
i =

⎧⎨
⎩

Ri i �= p, q
Rp − {Tk} i = p
Rq ∪ {Tk} i = q

Property 4.2. Let {(Ri,Ni)} be the current cluster con-
figuration, and triangles Tk ∈ Rp and Ts ∈ Rq, with unit
normals nk and ns, respectively, share an edge eks. If |nk −
Np|2 > |nk − Nq|2, |ns − Nq|2 > |ns − Np|2 and

|nk − Np|2|Tk| + |ns − Np|2|Ts|
< |nk − Nq|2|Tk| + |ns − Nq |2|Ts|

then

E(M,R′) < E(M, R)

where E(M,R′) is the same as that in property 4.1.

The correctness of properties 4.1 and 4.2 can be easily ver-
ified like properties 3.1 and 3.2 because of the optimality
of Ni. Besides, we can also update the unit normal Ni of
the proxy plane Pi only after distance comparison for all
cluster edges. The validity of such a configuration-wise up-
dating is again based on the optimality of Ni, same as the
discrete CCVT. Another parallel result from discrete CCVT
is that these Ni can be computed recursively. Ni of each
proxy plane is of unit length. We can get it by normalizing
the weighted normal Ni for each region. We keep record-
ing these Ni for regions. Then we can update Ni using a
similar formula as eq. (8) by introducing the variation nor-
mal var(Ni) for each region during the distance comparison
process.

Now we can deduce a convergent iterative algorithm for com-
puting the optimal geometric partition with respect to the
L2,1 metric. This algorithm is similar to the boundary test-
ing algorithm for CCVT. Starting with a valid initial geo-
metric partition of M , we perform distance comparison for
each cluster edge and record the variation normal var(Ni)
for each region at the same time. We then update the proxy
unit normal Ni by var(Ni) and update the cluster edge
sets. This process iterates until the cluster edge set doesn’t
change any more.

Note that this algorithm converges to a ”minimum” of the
distortion error E(M, R). But it might not be the global
minimizer of E(M, R). Nevertheless, test results show that
this algorithm always converges to a near-optimal result
quickly. For geometric partitioning, it would not be a prob-
lem to get a near-optimal partition. The theoretical advan-
tage of the new algorithm is that it is guaranteed to conver-
gent. We will discuss practical performance of this algorithm
in the application section.



Figure 4: Illustration of edge contraction in dual graph (defined by solid edges) [19]. Left: dual graph before
edge contraction; Right: dual graph after edge contraction, where two nodes in shaded area are merged into
a single node.

5. ACCELERATION STRATEGIES FOR IM-
PLEMENTATION

Several strategies can be used to accelerate the clustering
process. We will explore several possibilities here, such as
the ones considered in [24].

5.1 Initialization
Our iterative algorithm always begins with a valid initial
cluster configuration, i.e., the clusters are connected and
non-overlapping. A good initialization can reduce the clus-
tering time significantly. We apply the hierarchical face clus-
tering idea in [19] to design our cluster initialization. Hier-
archical face clustering respects the connected requirement
of clusters strictly. In the following we introduce a different
edge contraction criterion for each distortion metric.

The hierarchical face clustering is to partition the faces of
a triangular mesh into different connected sets of faces. It
builds such a hierarchical structure on the dual graph of the
mesh. The dual graph is constructed by mapping each trian-
gle in the mesh to a vertex in the dual graph, and generating
an edge to connect two vertices if the corresponding triangles
in the original mesh are adjacent. Then edge contraction is
applied on the dual graph iteratively. An edge contraction
merges two dual vertices into a single vertex. Figure 4 illus-
trates this concept. This means grouping two sets of faces
into a single cluster. After each contraction, the dual graph
is updated by replacing the two vertices with one vertex and
associating edges adjacent to these two vertices to the new
vertex. The edge chosen for contraction is based on a cost
function. In [19], the cost function is the planarity criterion.
For our algorithm, we define the cost function for an edge
eij that connects (Vi, zi, |Vi|) and (Vj , zj , |Vj |) as:

F (eij) =
|zij − zi|2|Vi| + |zij − zj |2|Vj |

|Vi| + |Vj |
where |Vp| =

∑
Tk∈Vp

|Tk| (p = i, j), zi and zj are the ”mass

centroids” of Vi and Vj , respectively, and zij =
zi|Vi|+zj|Vj |

|Vi|+|Vj | .

zi depends on our distortion error metric. It is the mass cen-
troid for the CVT constructing case and is the unit normal of
the proxy plane for the optimal geometric partitioning case.
The edge cost function F (eij) is just the energy functional
F (z) when there are only two faces Vi and Vj .

Given the cluster number n, we first decide an number k such
that the face number Nf of the mesh satisfies n2k < Nf ≤
n2k+1. Then we carry out k + 1 levels of edge contraction
on the dual graph. For the initial level, we will contract
Nf − n2k edges to reduce the nodes in dual graph to n2k.
For the next k levels of edge contraction, we will contract
half of of edges in current dual graph to reduce half of the

nodes. In the end, we will get exactly n clusters. It is always
possible to sort the dual edges according to the value of its
cost function. In order to speed the initialization process,
we only sort the dual edges in the last few levels which have
mush less edges. Our hierarchical initialization generates
exactly n connected clusters and accelerates the clustering
convergence.

5.2 Accelerators
Our algorithm converges. Thus only a few cluster edges need
to be modified when the limit point is close. As pointed
out in [24], one highly efficient strategy is to keep tracking
whether a cluster is about to settle down. If it becomes
static, then we don’t perform the distance comparison for
cluster edges adjacent to this cluster any more. Another ac-
celerating strategy is to trace potential cluster edges while
doing distance comparison for current cluster edges. Pre-
cisely speaking, if a current cluster edge is not modified, it
means the two triangles sharing this edge are not reassigned.
Then we simply take itself as a potential edge. If it is mod-
ified, then we consider (the five) edges of the two adjacent
triangles as potential edges. This potential edge tracking
strategy also accelerates the clustering process.

5.3 Validity of clusters
As stated before, a valid cluster must be connected, but our
algorithm does not guarantee that the resulting clusters are
connected. In practice, a cluster might end up consisting
of several distinct connected clusters. Once such a situa-
tion happens, we keep the largest non-isolated cluster and
reassign triangles to other clusters that are closest to them.
Another exception is that a cluster may be isolated, which
means it is adjacent to a single cluster only. In such a situ-
ation, we just reassign the triangles to their closest clusters.
In our experiments, these exceptions rarely happened when
clustering by discrete CCVT or CVT. But they happened
quite often when clustering by L2,1 metric.

6. APPLICATIONS
Depending on the clustering criteria, a mesh M can either
be uniformly coarsened after the construction of a discrete
CVT or CCVT, or be approximated in an anisotropic fashion
following the construction of an optimal geometric partition
with respect to an L2,1 metric. Uniform mesh coarsening
and anisotropic approximation for L2,1 metric are discussed
in details in [23, 24] and [2], respectively. We will explore
both techniques in our applications as well.

6.1 Uniform Mesh Coarsening
Once clustering of a mesh M by approximating CVT or
CCVT is done, the following work of getting a coarsened



Figure 5: Results of uniform coarsening on a statue and a head model. The left most and the second from
right figures are meshes with 800 clusters and 1000 clusters, respectively. The second from left and the right
most figures are coarsened results.

Models #F (org) #V (org) #V (approx) time(s) min∠ Ave. min∠ ∠ < 30◦ Qmin Qave

hand 72.9k 36.6k 1000 0.102 31.177 49.5895 0 0.580444 0.868164
head 214k 107k 1000 2.11 34.3362 52.1764 0 0.597016 0.903267
bunny 69.4k 34.8k 500 0.095 31.3123 50.321 0 0.581436 0.879907
sphere 131k 65.5k 200 0.388 38.549 53.329 0 0.640395 0.915695
horse 354k 177k 1.5k 6.24637 36.6344 51.6152 0 0.615523 0.897908
statue 272k 136k 800 1.457 32.0611 51.9163 0 0.541623 0.900297

Table 1: Results for uniform mesh coarsening

triangular mesh is relatively simple. The process is like a
Delaunay triangulation, with each cluster treated as a logical
vertex. The process is illustrated below.

First, a vertex is created for each cluster. Several techniques
can be used here. One approach is, for each cluster, take
the vertex that is closest to its mass centroid [23]. A second
choice is to use the Quadric Error Metric to compute a vertex
[24]. The first approach is used here since it conforms more
with the spirit of CCVT on a mesh.

The second step is to triangulate the vertices created in the
above step. Delaunay triangulation is used here. Two ver-
tices are connected with an edge in the coarsened mesh if the
corresponding clusters of these vertices are adjacent to each
other. Thus a vertex point that is shared by three clusters
corresponds to a triangle in the coarsened mesh. Degener-
ate cases, however, would arise if a vertex point is shared by
more than 3 clusters. The solution to such degenerate cases
is quite simple. If a vertex point is shared by n (≥ 4) clus-
ters, then there would be an n-side polygon in the coarsened
mesh corresponding to this vertex point. We simply trian-
gulate this polygon to get n− 2 triangles. Hence the output
coarsened mesh is always a triangular mesh. Examples are
shown in the next section.

6.2 Anisotropic Shape Approximation
After getting an optimal geometric partition with respect to
the L2,1 error metric, one can use the strategy presented in
[2] to construct an anisotropic polygonal mesh to approxi-
mate the original mesh.

The first step is anchor vertex creation. An anchor vertex
corresponds to a vertex in the original mesh that is shared

by more than 3 clusters. The position of the anchor vertex
is the average of the projections of the corresponding ver-
tex to its shared clusters. The next step is edge extraction.
A vertex corresponding to an anchor vertex is connected to
other such vertices by cluster edges in the original mesh. We
connect two anchor vertices if their corresponding vertices
are linked with cluster edges and there are no other such
vertices between them. Because of anisotropic property, an
edge between two anchor vertices may not faithfully capture
the geometry on the original mesh. Therefore, sometime it is
necessary to insert new anchor vertices between two anchor
vertices to get more edges according to some criteria such
as: d · sin(Ni,Nj)/ ‖(a,b)‖ is less than a threshold, where
‖(a,b)‖ is the distance between a and b, d is the largest dis-
tance from the vertices on the boundary arc in the original
mesh to (a,b) and (Ni, Nj) is the angle between the two
adjacent clusters Ri and Rj . After edge contraction, tri-
angulation is performed. A multi-source Dijkstra’s shortest
path algorithm is applied to do the pseudo-Constrained De-
launay Triangulation, which will preserve the edges on the
boundary in the final triangulation. In this algorithm, each
anchor vertex represents a color. This algorithm first col-
ors vertices in the original mesh which are on the boundary
with the color of the closest anchor vertex. Then do color
assignment for interior points in each cluster. Then for each
triangle in the original mesh whose three vertices have dis-
tinct colors, we create a triangle in the approximating mesh
whose edges are connected according to the colors in the
referring triangle. More on postprocessing is discussed in
detail in [2]. To clearly show the anisotropic effect, we only
show polygonal mesh representations of the examples used
in this paper.

7. RESULTS



Models #F (org) #V (org) #F (approx) time(s)
hand 72.9k 36.6k 98 1.542
face 98.4k 49.3k 119 1.084
fandisk 12.9k 6.4k 32 0.032
monster 130k 65k 120 1.8327

Table 2: Results for anisotropic mesh approximation

The algorithms presented in this paper are implemented on
a laptop computer with 1G memory and Intel Core 2 CPU
T7200 under Windows. Performance data for uniform mesh
coarsening applications are collected in Table 1. Experimen-
tal data for anisotropic shape approximation are gathered in
Table 2. Notice that the new algorithms run very fast. It
takes only a few seconds to get the job done for a mesh with
more than 200k faces.

For the uniform mesh coarsening application, the quality of
the output mesh M is measured in several aspects, as listed
in Table 1. ’min ∠’ stands for the minimum angle degree of
the triangle faces in M . Similarly, ’Ave. min ∠’ computes
the average minimum angle degree. ’∠ < 30◦’ counts the
number of angles smaller than 30 degrees. ’Qmin’ (minimal
quality) and ’Qave’ (average quality) measure the triangle
shapes. Both terms are defined in [5]. The examples have
also been tested using the program provided by the authors
of [23, 24]. The execution times for models bunny and hand
are 0.328s and 0.266s, respectively, which are slower than
the new algorithm. However, the execution times on the
statue model and the horse model are 0.954s and 1.547s,
respectively, which are better than the new algorithm. But
the output meshes of the new algorithms always have better
mesh quality. For instance, for the sphere model, the data
generated by the program of [23, 24] are min ∠ = 37.7732,
Ave. min ∠ = 52.8697, ∠ < 30◦ = 0, Qmin = 0.710607 and
Qave = 0.9096. Data generated by the new algorithm are
better.

From Table 2, one can see that the new algorithm runs very
fast and gives good approximation results. This shows that
the new algorithm is practical. The new algorithm contracts
one face for each cluster. Then the number of clusters in the
clustering result for each mesh is just the ’#F (approx)’ in
Table 2, such as 32 clusters for the fandisk model. The
anisotropic nature of the L2,1 error metric is demonstrated
in these examples.

8. CONCLUSIONS
In this paper we propose a novel clustering algorithm for
a polygonal mesh M by approximating CVT or CCVT on
M . The new clustering algorithm is also suitable for clus-
tering construction with respect to the L2,1 error metric.
We present a rigorous mathematical analysis for the new
algorithm. Our algorithm possesses the intrinsic distance
comparison as the local geometric operation, which is sim-
pler and more intuitive than those used in [23, 24]. More-
over, our algorithm updates the cluster configuration only
after comparing all cluster edges. The proposed algorithm
based on Lloyd method for constructing the optimal geo-
metric partition in [2] is not guaranteed to converge. But
the new algorithm is proved to converge for constructing dis-

crete CCVT and CVT on M or clustering with L2,1 metric.
Although the new algorithm runs more or less as those in
[24], the coarse mesh produced by the new algorithm has a
better mesh quality. Depending on the clustering criteria,
we show examples for both isotropic and anisotropic mesh
approximations. The anisotropic mesh approximation by us-
ing CVT is also investigated in [24]. It seems an interesting
problem to generalize the new algorithm for the anisotropic
case. This will be investigated in the future.

APPENDIX

A. INTEGRATION OVER A TRIANGLE
Suppose the triangle Tk has three vertices x1, x2, x3. Let
x ∈ Tk. Then we have x = λ1(x)x1 + λ2(x)x2 + λ3(x)x3,
where λi(x)(i = 1, 2, 3) are the barycentric coordinates of x.
We have

∑3
i=1 λi(x) = 1. Then

∫
Tk

|x − zi|2dx =

∫
Tk

|λ1(x)x1 + λ2(x)x2 + λ3(x)x3 − zi|2dx

=

∫
Tk

|
3∑

j=1

λj(x)(xj − zi)|2dx

=
3∑

j=1

∫
Tk

λj(x)2|xj − zi|2dx

+2

∫
Tk

λ1(x)λ2(x) < x1 − zi, x2 − zi > dx

+2

∫
Tk

λ1(x)λ3(x) < x1 − zi, x3 − zi > dx

+2

∫
Tk

λ2(x)λ3(x) < x2 − zi, x3 − zi > dx

Using the fact that
∫

Tk
λi(x)λj(x)dx = |Tk|/12 (i �= j) and∫

Tk
λi(x)2dx = |Tk|/6 (i = 1, 2, 3) (see [1]), we have

∫
Tk

|x−zi|2dx =
|Tk|
6

( 3∑
j=1

|xj−zi|2+
∑

1≤r<s≤3

< xr−zi,xs−zi >
)



This equality is also a special case of [14]. Consequently, we
have∫

Tk

|x − zi|2dx =
|Tk|
12

( 3∑
j=1

|xj − xk + xk − zi|2
)

+
|Tk|
12

( 3∑
j=1

|xj − zi|2

+
∑

1≤r<s≤3

2 < xr − zi, xs − zi >
)

=
|Tk|
12

( 3∑
j=1

|xj − xk|2 + 3|xk − zi|2
)

+
9|Tk|
12

|xk − zi|2

=
|Tk|
12

( 3∑
j=1

|xj − xk|2
)

+ |xk − zi|2|Tk|

where xk =
∑3

i=1 xi

3
.

B. EXPANSION WITH THE MASS CENTROID
Let z̄i =

∑
Tk∈Vi

|Tk|xk∑
Tk∈Vi

|Tk| be the mass centroid of Vi. z̄i satisfies

the following equation∑
Tk∈Vi

|Tk|(xk − z̄i) = 0

Consequently,∑
Tk∈Vi

|xk − z|2|Tk| =
∑

Tk∈Vi

|xk − z̄i + z̄i − z|2|Tk|

=
∑

Tk∈Vi

(|xk − z̄i|2 + 2 < xk − z̄i, z̄i − z >

+|z̄i − z|2)|Tk|
= 2 <

∑
Tk∈Vi

|Tk|(xk − z̄i), z̄i − z >

+
∑

Tk∈Vi

|xk − z̄i|2|Tk| +
∑

Tk∈Vi

|z̄i − z|2|Tk|

=
∑

Tk∈Vi

|xk − z̄i|2|Tk| +
∑

Tk∈Vi

|z̄i − z|2|Tk|

Figure 6: Clustering and coarsening results for a
sphere model. Left: a sphere with 200 clusters.
Right: coarsened mesh.
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[16] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least
squares conformal maps for automatic texture atlas
generation. ACM Trans. Graph., 21(3):362–371, 2002.

[17] P. Lindstrom and G. Turk. Fast and memory efficient



polygonal simplification. In VIS ’98: Proceedings of
the conference on Visualization ’98, pages 279–286,
Los Alamitos, CA, USA, 1998. IEEE Computer
Society Press.

[18] P. Lindstrom and G. Turk. Image-driven
simplification. ACM Trans. Graph., 19(3):204–241,
2000.

[19] A. W. M. Garland and P. S. Heckberty. Hierarchical
face clustering on polygonal surfaces. In Proceedings of
the Symposium on Interactive 3D Graphics, 2001.

[20] A. Okabe, B. Boots, and K. Sugihara. Spatial
Tessellations Concepts and Applications of Voronoi
Diagrams. John Wiley & Son, 1992.

[21] A. Sheffer. Model simplification for meshing using face
clustering. Comptuer-Aided Design, 33:925–934, 2001.

[22] G. Turk. Re-tiling polygonal surfaces. SIGGRAPH
Comput. Graph., 26(2):55–64, 1992.

[23] S. Valette and J.-M. Chassery. Approximated
centroidal voronoi diagrams for uniform polygonal
mesh coarsening. 23(3):381–389, 2004. (Proc.
Eurographics’04).

[24] S. Valette, J.-M. Chassery, and R. Prost. Generic
remeshing of 3d triangular meshes with
metric-dependent discrete voronoi diagrams. IEEE
Transactions on Visualization and Computer
Graphics, 10(2):369–381, 2008.

[25] S. Valette, I. Kompatsiaris, and J.-M. Chassery.
Adaptive polygonal mesh simplification with discrete
centroidal voronoi diagrams. In Proceedings of 2nd
International Conference on Machine Intelligence
ICMI 2005, pages 655–662, 2005.


