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Abstract

The current cubic spline curve interpolation scheme is
derived based on the implicit assumption that the magni-
tude of the first derivative of the curve is close fo a con-
stant. However; the assumption is not realized by the inter-
polation scheme. A knot choosing technique for parametric
cubic spline interpolating curve construction that accom-
modates this assumpltion is presented. A comparison of the
new method with several existing methods is performed and
test results are included.
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1 Introduction

The problem of constructing paramefric interpolating
curves is of fundamental importance in computer aided ge-
ometric design/modeling, scicentific computing and com-
puter graphics. The constructed curve is often required to
be smooth (satisfying some continuity requirement) and as
well as visually pleasant’[4][9][13] (with smooth curva-
ture distribution} while reflecting the shape suggested by the
data points. Since smaller strain energy implies smoother
curvature distribution, it has been popular recently to im-
pose minimum energy constraint on the curve/surface inter-
polation or approximation process.

The construction of a smooth and visually pleasing para-
metric interpolating curve requires not only a good interpo-
lation method, but also appropriate choice of the parameter
knots. Several results have been published on knot choosing
in parametric interpolation [6}[8][10][12][14K17]. How-
ever, this problem is far from being completely solved yet.

In constructing parameltric curves, the simplest method
to choose knots is the uniform parametrization. This
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method usually leads 1o unsatisfactory result if the phys-
ical spacing of the data points are uncven. Three wmeth-
ods have been proposed for non-uniform parameirization,
namely, chord length method, centripetal model [10] and
adjusted chord length method ([5], p.111; referred as Fo-
ley’s method). Experimental results show that, approxi-
mationwise, none of these methods has obvious advantage
over the other ones. As far as pleasantness is concerned,
centripetal model and Foley’s method produce better re-
sults than the chord length methed, Although these methods
are widely used in constructing parameiric curves, there are
many occasions in which nonc of these methods can pro-
duce a satisfactory result. In those cascs, the constructed
curves using knots chosen by these methods are obviously
different from the shape suggested by the data points (see
Cases (a), (b) in Figures 4-5 in Section 5).

In paper[17], a new method for determining knots in
parametric curve interpolation is presented (referred as
ZCM method). The knots ate determined using a global
method. The determined knots can be used to construct
interpolants which reproduce parametric quadratic curves
if the interpolation scheme reproduces quadratic polynomi-
als. When used to construct visually pleasant interpolants,
the method produces curves as visually pleasing as the
ones produced by the centripetal and Foley’s methods. Re-
cently, the problem for determing knots for constructing B-
splines/NURBS is discussed in papers[151{16], the knots
are determined using the energy-optimization method.

An important issue that has not been addressed by the
current knot choosing methods for parametric cubic spline
interpolation is the accommodation of the first derivative
constraint. The current scheme for constructing a paramet-
ric cubic spline interpolating curve is derived based on the
implicit assumption that the magnitude of the first deriva-
tive of the interpolating curve is close to a constant. Hence,
a parametric cubic spline interpolation process should en-
sure that the constraint is accommodated by the interpolat-
ing spline curve. Unfortunately, no such effort has been
found in the Literature yet. An interpolating curve construc-
tion process that does not satisfy this constraint may result




in a curve that is not visually pleasing at all (sce cases (a)
and (b) of Figure 4). In this paper we will present a knot
choosing method for the parametric cubic spline interpola-
tion process that accommodates this constraint. Test resulis
show that the new method produces interpolating curves vi-
sually more pleasant than the chord length method, the cen-
tripetal model , Foley's method and the ZCM method in
most of the cases.

The remaining part of (he paper is arranged as follows,
The basic idea of the new method is described in section 2.
The idea of choosing knots in constructing a quadratic infer-
polating curve is studied in Section 3. Based on the discus-
sion of Sections 2 and 3, a new method for knot choosing
in constructing visnally pleasant cubic spline curves is pre-
sented in Section 4. Implementation and test results of the
new method with current methods on several representative
data sets are given in Section 5. Concluding remarks are
given in Section 6.

2 Basic idea

Let P; = (z:,%:), 1 €4 < n, be aset of data points sat-
isTying the condition P; # Py {or all. Our goal is to con-
struct a paramnetric curve interpolant to F;, ¢ = 1,2, ... n,
wilh a visually pleasant shape suggesied by the data points,
P(t) is usually constructed as a piccewise parametric curve,
with a cubic spline curve as (he main choice. If P(¢) is con-
structed as a cubic spline, then on each interval [t;, tiy1],
i=1,2,..,n— 1, P(t) may be defined as follows:

Pi(t) = wo(8) Pitor (s)hi M+ (8)hi Mg +1!'10(S)Pi+11)=
(
where
ols) = (=125 +1), gl = (s 1P
dol) = (<25 43),  i(s) = (s~ 1)

are cubic Hermite basis functions, s = (t — ¢;)}/h; with
hi = tizx — ti, and M; are the derivatives of P(t) at t;.
It is generally accepted that P(f) would have a satisfac-
tory shape if M; are determined by minimizing the internal
strain energy of the spline curve
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where (@) is the curvature of the spline P(#), defined as a
function of the arc length of P(t).

If the magnitude of the first derivative of P(t) is close to
a constant ', then

¢
_— / (1) [dt = CE — to),
to
and (2) can approximated by the following simple form

= / P (6) Pt ©

Conscquently, we have the following system of n — 2 equa-
tions fori = 2,...,% — 1,

hiddi_q + (Riey + hi) My + hiMiy =

3h; 3hi_ 4)
(P,- - P;_.l) + ! (Pi+1 — Pi).
hiz1 h;

P(t) is determined by solving eq. (4) with two end con-
ditions at P, and F,. The only quantities that can change
the shape of P(t), consequently, are h;, oz, the knots t;,
i = 1,2,--+,n. Obviously these knots should be chosen in
a way so that the above first derivative constraint is indeed
satisfied by the interpolating curve. The basic idea of a knot
choosing technique that accommodates this first derivative
constraint is shown below.

Let t;. 1, t; and {41 be three knots corresponding to
Pi_q, F; and P;y respectively. The degree two paramet-
ric Lagrange polynomial ;(t) which interpolates F;_q, £
and Py att;_, t; and ¢4, respectively, is defined by

(=)t —tig)
Qi) = (tic1 — t:){tic1 — tipa)

(t —ti—1)(t — t,')
(fi41 = tim1){tipr — 23

To simplify the process of making the magnitude of the first
derivative of P(t) close to a constant, the scgment of P(t)
between Pi_y and Piy1 will be approximated by Q{t).
Hence, making the magnitude of the first derivative of P(t)
close to a constant is essentially a process of making the
magnitude of the first derivative of Q;(f) close to & con-
stant.
By substituting

(Piq — Pi)+
()
(Piya — F5) + P

t=ti_1 + (tig1 —tic1)s 6
;= (8 — tia) /(G — tiz1) ©)

into (5) one obtains

(s —si)(s— 1)

Qi(s) = -~ (Pr_y - P)+
’ (7
S(S “S;)
‘"’i—(P-f-o-l*Pi)-l-Pi, (<8<,

where s; is a variable to be determined between 0 and 1.

With s; being a variable, Q;(s) is actually a family of
curves. The idea here is to choosc an s; that would make
the magnitude of the first derivative of Q;(s) close fo a con-
stant. Let Q;(s) = (z:i(s),9:(5)), and ¢, and ¢, be two
constants. This goal may be realized by minimizing the fol-
lowing objective function:

ds

oo = [T ey (B - e

Details of the process are shown in the subsequent sections.




3 Determining Free Variable s;

Straightforward computation shows that

Al
3

A?
(1 — 57')2

2coscx;
i = L A A D;,
f(si) si(1 —51) 184+ )+Ds,

1
(E -
where

D = (&ig1 — i1 — )2 + (Y1 — Yio1 — )

A;y = |Pi_1 P| denotes the distance between Py and
Pi, and o is the angle between the vectors P P and
P;P; 4, as shown in Figure 1,

P )a, Piy

Qi1

P, Piya

Figure 1. Angle «;

The free variable s; is determined by the following equation
d 5.
dlsi) _ 0. (8)
ds;
We discuss solutions of (8) for three special cases e; = 0,
T .
a; = —, and a; = 7 first,
a) a; = 0 cosa; — 1, i.e, P; is & point between Py
and Py, Then

1.1 1
i) = z(—Ai1 — — A 2 D;.
fls) 3(.9.,- T )+
By defining A
_ i—1
BT AL+ A ©)

we have f(s;) = D;, and (8) is satisfied. Substituting (9)
into dQ;(s)/ds, one gets |dQ;(s)/ds| = A1 + Ay, This
means that if P; is a point between Pi_y and Piyy, and s; is
defined by (9), then the magnitude of the first direvative of
(}:{s) is a constant and (J; is a straight line that is the most
pleasant curve one can get in this case.
by a; = g: cos c; = 0, then (8) becomes
(1 s:)PA, - s3A2 = 0.

k4

Thus
(1%

¢) ;= eosay; = —1, L&, vectors P Py and B Py
are in opposite directions. Then

1.1 1
8;) — — —Af_ ————A; 2 D,‘.
Ho) = g(G A b gm0

The solution of (8) is

L
2
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S Sl (1)
A+ A7

8; =

Substituting this solution into dQ;(s)/ds, onc gets
|d€Q:(s;)/ds| = 0. This means that if vectors P;— F; and
P;P;,; are of opposite direction, and s; is defined by (11),
then the magnitude of the first direvative of Q;(s) at s; is
zero. If Q;(s) is viewed as the trajectory of a particle, then
|dQi(s;)/ds| = 0 means that the speed of the particle is
zero when passing through the point ;. The zero speed
makes it easy for the particle to twn around at P;. It is easy
to see that in this case the trajectory of Q;(s) is the polygon
P;_1 P;P;;,, and this is the most pleasant trajectory one can
get.

In the following we will use the values of s; at a; = 0,
/2, and 7 to define the value of 5; for 0 < a; < .

Suppose that t;,.; — ; can be expressed as a function of
o, 1.6, ting —t; = floy), then t4 — &; can be expanded
as a Taylor series at a; = 0

bigr — & = f(0)+-c—£i'(0—)*ai +O(O:?) (12}
dax
For a; = 0, 1.e., P;_1, P; and P;;, are on the same ling in
that order, setting £; —¢;.; = A;oqand ;00 —t; = Ajis a
natural choice, according to egs. (6) and (9), thus we have
f({)) = A Sincetyp —f = Ajand £ -t = FANIR
at ey = 0, it Tollows from eq. (12) that, for 0 < a; <,
t; —t;_1 and t;41 —t; can be approximated by the first and
second terms of their taylor expansions as follows:

ti —tic1 = A1 {1+ by f7), (13)
tion —t = Ay(1+ aai /). -

whereb; and a; are to be determined. Notethat (13) satisfies
(9) for er; = 0.

By substituting a; = /2 and 7 into (10}, (11) and (13},
one gets

2
T

A (14 b/2) AL,
A'i—l{] +b;/2)+A,(l+a,/2) - %‘%—] »{—Aff:
Ai_1(1+b;) AL

A;_1(1+hi) +A;(] —|—a,-) - A% . ~|~A%

The solutions are




A; o ;
b,’:( ¢ )3+( A‘ )il'fg-j[a

Ay Dy 14
'_(Ai~l% i-1y4 4 (14)
w = (B g (B,

Hence, for general 0 < a; < m, 5; is defined as

Aoy + bia)
Ay (‘JT -I-b,-a,—} -+ &,‘_(?T -+ a,-a;)

§i = (15)
with a; and &; being defined in (14). This definition of s;
satisfies egs. (9), (10) and (11).

4 Determining Knots ¢

We will determine the values of the knots ¢; in this sec-
tion.

From the second case in {13) one gets an approximated
valueof ¢,y —4;. By working with a;; using F;, F;+y and
Piy9, one gets another approximated value of £ —#; (see
case one of (13) with ¢ replaced with 7 - 1). These values
arc shown bhelow.

tip1 — 6= A1+ gy fmr),
ticn — ti = A(1 4 bipraiga fm).

It follows from eqgs. (12) and (13) that to get more preci-
sion result, £;., — t; can be expressed as

t;_;.l by = A,-(l + A,'(L,'O!;/TI’),
tiy1 —t:i = A,ﬁ{l + B;b;+1a,-+1/7r).

where A; and B; are unkowns to be determined.

These two expressions can be used to define £ — ;.
Since the formation of ¢;4; — #; is related to both oy and
i1, tieq — t; should be defined as a combination of these
two expressions. By testing many sets of data points, the
following combination (16), based on the lengths of the
adjacent legs of P;F,y,, has been proven to be is a better
choice to define £;43 — ¢;

2
Xilaa; + Y2 hivr g )

ting —t; = A1 16
+1 (1+ - (16)
whoae A; = Ay and By =y
Ay Ay
i = ; Y=l ———.
A=1+4 A 7y + A,

The factors ); and -y; have the property that if the value of
a; ¢y is bigger than that of b, asy.1, then a;«; has a bigger
influence on the formation of ¢, — t; than b; (1 a;+1. Eq.
(16) holds for¢ = 1,2,...,n — 1witht; = an = ay =
Ap = An-{—l =0.

For evenly spaced data points, knots defined by (16)
generally produce better results when applied to cubic

spline interpolation.  Several examples are shown in
Figure 2. The data points used to produce the curves are
defined by

P3 = (00) Py = (]O)

P, = P3 + (2cos(m — a3), 2sin(m — az)),

Py= (P +¢Fa)/(1+¢), (17}
Pe = Py + (2cos(cy), 2sin{ay)),

Py = (Psfgp+ Po)/(1/¢+1).

The curves shown in Figure 2 are cubic spline interpolating
curves of these data points with ¢ in (17) set to 1 and vary-
ing a3 and a4 vatues. The symbol "+ denotes the position
of a given data point.

AN

{a) (b}

N

Figure 2. (a) oz = 7/4, ay = 371/4, (b) a3 =
3w/d, ay = 3 /4, (€) a3 = 0, g = =37 /4, (d)
(23] :7?/4, ay = '—11'/4

(

The experiments show that with the value of ¢ in (17)
set to 1, the knots produced by (16) produce satisfactory
cubic spline interpolating curves for all a3 and ay satisty-
ing 0 < aa < 3w/dand —37w/4 < ay < 3m/4. It should
be pointed out that Foley’s method produces satisfactory in-
terpolating curves for all the a3 and a4 tested as well. This
is because Foley’s method also considers the influence of
angles between adjacent control legs in the construction of
ti.

For unevenly spaced data points, the values of some
A1 /A and Agpq/A; could become large and, conse-
quently, lead to large t;;.1 — £; and unsatisfactory results.
For instance, if the coordinates of the given data points are
(0,0), (26,24), (28,24), and (54,0) {10], then the knots deter-
mined by (16) are 0.0, 29.3, 70.9, 100.3, respectively. The




cubic spline curve constructed with these knots has a loop
between (26,24) and (28,24). This shoricoming can be over-
come by pulting a constraint on the magnitude of the second
and third items in (16), as folows.

Ai(T+m)  if 7 <k
tip) b = g
‘ ' A1+ ki -+ m—zi——K—'), otherwise,
1+ T — K

(18)

with

i = (Al aioy + 9 %bipiain )/ (u - w),
K = g v+ o,
A Ay
Hi = —1; v, = ,_,_Ll_
Ai—l + Ai Ai + Ai-&—l

where A; and +; are defined in (16). Note that the maximum
value of ki + (77 — k) /(1 + 75 — £;) is 3 4, which is an
approximation of 27, the maximum value of the second and
third items in {16) for equally spaced data points.

Experiments showed that (18) gives better results for the
data points defined by (17) for all ¢, e and e, which sat-
sty 1/3 < ¢ < 3,0 < az < 3n/dand =37/4 < a4 <
/4.

S5 Experiments

Four sets of representative data points have been used
to compare (he new method with the centripetal, Foley’s
and ZCM methods. The uniform and chord length methods
are not included in the comparison as they produce unsat-
isfactory curves for all the four sets of representative data
points. The comparison is performed using knots deter-
mined by these methods in the construction of a parameiric
cubic spline curve which interpolates the given data points.

The three-point difference formula [3] is used to deter-
mine the end conditions of the spline curve. The four sets of
representative data points are the Akima {1], FRN 15A {7],
Brodlic [2] and Lee [10] data points. The curves generated
by these methods are shown in Figures 3-6, where the sym-
bol "+ denotes the location of a given data point. Figures 3-
G show that the curves generated by the new method possess
the shape suggested by the data points, and are more visu-
ally pleasing than the ones generated by centripetal model
and Foley’s method. Figures 3-6 also show that the ZCM
method and the new method produce similar visually pleas-
ing curves for Akima, FRN 15A and Lee data points, but
different curves for Brodlie data points. Another difference
of these two methods is that ZCM method is global, whereas
the new one is local. Using the four sets of representative
data points, we have also compared the four methods on
natural cubic splines and the results are basically the same
as the ones shown in Figures 3-6,

{a) (b}
{c) {d)
Figure 3. Data points in (Akima, 1970),
{x,y}={(0,10), (2,10), (3,10}, (5,10), (6,10), (8,10),
(5,10.5), (11,15}, (12,50), (14,60), (15,85)}. (a) cen-

tripetal model , (b) Foley’s method, (c) ZCM method,
{d) new method.

6 Conclusions

A new knot choosing technique for parametric cubic
spline interpolation process is presented. The new cubic
spline curve interpolation process makes more sense be-
cause it is derived based on the first derivative constraint,
i.e., on each interval, the knots are chosen by requiring the
magnitude of the first derivative of the two adjacent curve
segments Lo be close to a constant.

Test results comparing the new method with the cen-
tripetal model , Foley’s method and the ZCM method show
that 1) when used to construct parametric cubic spline
curves, the new method, the centripetal model , Foley’s
method and the ZCM method generally produce better re-
sults than the chord length method; 2) in most of the cases
the new methed produces more visually pleasant curves
than the centripetal model , Foley’s method and the ZCM
method.
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