Interproximation:
interpolation and |
approximation using cubic

spline curves

F Cheng and B A Barsky*

An algorithm for the construction of a cubic spline curve
with relatively good shape that interpolates specified data
points at some knots and passes through specified
regions at some other knots is presented. The curve
constructed by the algorithm has minimum energy on
each of its components. This algorithm has applications
in various fields, such as the reconstruction of natural
phenomena where data points cannot be sampled
exactly, or computer-aided modeling where some of the
fitting points cannot be explicitly specified.

splines, interpolation, uncertain data

The need for curve and surface interpolation arises in
computer graphics, image processing, computer vision,
pattern recognition, computer-aided design and
numerous other fields"'”. The task is to construct a
curve or surface that interpolates, or passes through,
a given set of points such that the shape of the curve
or surface can be used to model some desired image
or object.

Interpolation using spline curves and surfaces has
been studied extensively® . Efficient algorithms have
been proposed for both sequential and - parallel
environments "**1%"7 Several different approaches to
the removal of undesirable oscillations of the interpolating
curves or surfaces when the data vary rapidly have
also been proposed™ 8. For the situation when
interpolation of the given points is not required,
Reinsch™ proposed an algorithm for the construction
of a cubic spline curve that approximates the given
points with the energy of the curve being minimized.
However, a different case has not yet been explored:
what if a spline curve is required to interpolate several
given points, but is only required to pass through some
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Figure 1. Spline curve that interpofates several given
points and passes through some specified regions

specified regions at some other points (see Figure 1)
How then should such a curve with relatively good
shape be constructed?

This approach has applications in various fields, such
as the reconstruction of some natural phenomena
where some of the data points cannot be sampled
exactly (and only a range of the points are known), or
computer-aided design using fitting techniques, where,
in the search for an optimal design, a CAD designer
may not be sure where some of the fitting points should
be (having only a rough idea about the range of the
possible positions of these points). The approach finds
applications even when all the data points are given
explicitly; regions can be specified between consecutive
data points to bound the behaviour of the fitting curve
so that the curve has a desired shape.

It is certainly possible, in either case, to estimate
these uncertain points, and to use interactive techniques
to improve gradually their positions, and, hence, the
shape of the curve. The problem with this approach s

computer-aided design




that it takes too many trial-and-error iterations. It would
be better to obtain a satisfactory curve at the outset,
or at least a curve that would not require excessive
subsequent work.

This paper presents an answer to this question for
2D curves. Specifically, an algorithm is presented for
the construction of a cubic spline curve with relatively
good shape that interpolates specified points at some
knots, and passes through specified rectangular regions
at some other knots. The cubic spline curve constructed
by the algorithm has minimum energy at each of its
components. Two examples are given to show how
this algorithm can be used to remove undesired
oscillations generated on an ordinary cubic spline
interpolating function/curve by the specification of a
few intervals/regions between interpolation points.
These examples demonstrate that, by the use of this
approach, a spline function/curve with the desired
shape can be constructed in just a few steps.

The approach is based on the observation that this
problem can be abstracted as a minimization problem
for some quadratic form, and, therefore, techniques for
quadratic forms can be used to solve this problem.
First, the problem is formally defined.

DEFINITIONS AND PROBLEM FORMULATIONS

Let T= {ug, Uy,..., Up, Vs, ..., Vi } be a set of distinct
knots contained in the parameter interval [a, bl with
Up = a. Let H be the set of 2D cubic spline curves on
[a, b] for the knot sequence T, i.e. H= {8 = (8,,8,)},
where 8, and §, are real-valued cubic spline functions
on [a, b] for the knot sequence t.

Problem 1: Given P,=(x,y), i=01,..,n, and
Af = [a", b',] X [Cf’ dj]‘] = 1,. 2,..., m, ﬁnd § = (S-], Sz)EH
such that

§(U,’) = Pj

Stvle A

and the following condition is satisfied

b b
J [S?(uN?du = min{j [SP(u)? du|SeH,

4a

i=01..,n
] (1
[=12....m

a

$ satisfies Equation 1}

where

[SP(u))? = (dst(”})z + (dzsz(“) 2 -
du? du?

That is, among all the 2D cubic spline curves that
interpolate P; at u;, i == 0,1,..., n, and pass through A
atv, j=1,2,..., m, the one with the smoothest shape
{i.e. the one with minimum ‘energy’*)is searched for,
Although each 2D parametric cubic spline curve has
two components, as energy will be computed on the
basis of individual components, and the technique

* The energy definition used in this paper follows that of Kjellander®,

For more discussion on the definition of energy, see Lee®'.
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involved for each component is actually the same, it
is sufficient to consider this problem for curves with
only a single component, i.e. cubic spline functions.
Therefore, by the definition of F as the set of cubic
spline functions on [a, b} for the knot sequence t,
Problem 1 can be rewritten as follows.

Problem 1': Given x;, i =0,1,...,n, and A; = [a;, b,
j=1,2,...,m find feF such that
flu;} = x; i=01...,n
f(v)eA
and the following condition is satisfied
Jb[fm(u}F du = min{Jb (g% ()1” du|

a

(2)
j=12,...,m

geF, g satisfies Equation 2}

where f? is the second derivative of f with respect to u.
|

Obviously, F can be decomposed as the direct sum
of I, and F
F=II,®F

where I, is the set of real polynomials of degree <1
and

F={glgeF gla) = gMa) = 0}
Hence f (if it exists) can be expressed as
flu) = fu) + %, + Xa(u — a)
for some feF such that

E(u,-)zx,-—xo—x{)(u,-—a) i=12..n 3
?(V‘,}EA‘,—XO—X{')(W-—&) j:1,2,...,m
and
b b
f F2n12 dt = min” [g@(0)1? dt]
geF, g satisfies Equation 3} (4)

where xp, representing the derivative of f at u,, is given.
Now, for any f, geF, if

b
{hgy= j f2(u)g?(u) du

is defined, then
1] = ()72 (5}

defines a norm on F. F is a separable Hilbert space®
with this norm. Note that
t—u  {t—aP  (t—a)
(t—ui o a)+( (U — a)
6 6 2

Kiu, t)

is a reproducing kernel of F, i.e.

b
K> = J 2t — ) du = (1)

it




for any f&F. Therefore, if
glu) = K{u, uy) i=12...,n

h{u) = Klu, v) i=12...,m

is set, and
X =X, — Xg — Xolu; — a) i=12,...,n
A=A—x—xyy—a j=12..m
F(%, {feF](f g,)—x,,; 1,2,...,n,

{f, h,.>eA,.,; =12..,m}

is defined, then Problem 1" is equivalent to the following
Problem 1"

Problem 1”: Find fe F(%, A) such that
1#1l = min{ | {]fF(X A)} n

It is this problem that is solved in this paper in the next
section.

SOLUTION
It is first proved that such an fis a linear combination
of 8 and hf'

temma 1: The solution f of Problem 1" satisfies
~ n m
. =

n, and §,

for some constants o, i=12,...,
j=12..m

Proof: The proof is standard, and is presented for
completeness only. The existence of T follows from the
fact that F(x, A} is a nonempty, closed subset of a
separable Hilbert space. For_it to be shown that
Equation 6 s true, observe that f can be expressed as

f=h+ i; og + ; Bihy

where o;, i=1,2,...,n and f§, j= ,m, are
constants, and h is an e[ement inF that is orthogonai
to the finear span of {g,..., & by, ..., h,}. As

f—heF® A)
and
G =d—-hi-h>+{(hh)
it follows that h = 0. Therefore, Equation 6 is true. Wl

The following lemma shows that, to find f, it is sufficient
to find B, j = 1,2,..., m, in Equation 6 only.

lemma 2: o' ={a,0,,...,a,) depends on p'=

(B4, Bz, - ., B} oOnly. Specifically,
a=2Z""(k —Wpg) (7)
where
Z=(Zpdnxn =G Bk hnxn
W= (wkrnXm = ({hy, 8P xm {8)
X' = (x1,x2,...,in)
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Proof: As (?, g =X, fork=12...,

Y e mont 3 (g =%
= ‘,=

n, it follows that

k=12...,n
or
Za=%x—WJ

where Z, W and X are defined in Equation 8. Obviously,
as it is a Gram matrix, Z is symmetric and positive-
definite?®, Therefore, Equation 7 is true, ]

To find B, observe that
Ghdek  1=12..m
Therefore,

21 (g hpw + Z} Chy, hi‘>ﬁi6‘ﬁ"
i= =

I=12...,m
that is
Wi + NfeA (9)
where

N == (nf,f)mxm = (<h,u‘f h!>}mxm

o~ mo
A= X A
=1
By the use of Equation 7,
Wig + NS = W'Z7T1(x — W) + N
=WZ7TX - W'Z WS + Np
=IN—WZ'W)g+WZ7'x (10}
Hence, from Equations 9 and 10,
(N—W'Z '"W)BeA ~ WZ % (11}

Now it can be shown that minimizing || f]] is equivalent
to minimizing a quadratic form subject to some
condition,

Theorem 1: Minimizing |i¥|| is equivalent to minimizing
BV p subject to the condition that

VBecA—WZ7'% {(12)
where
V=N—WZ W {(13)

Proof: By the use of Lemmas T and 2,

T2 = a'Ze + BENB + 22 WS
=X — WPBIZ™'ZZ7(x — Wp) + NS
+ 2 —wWprzT'wp
=X —WBI'Z7'% + NS
+ (X —WpHZ 'wg
=77 — PWZTR 4 BINS + XZTTWP
— W'z 'wg
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As B'W'Z 77X = %X'Z7"W§, it follows that
1§12 =%Z7'% + N — WZT'W)p
—RZ7% + VB

where V is defined in Equation 13. The _theorem then
follows from the observation that X*Z "X is a constant,
and the fact that B must satisfy Equation 11. [ |

To minimize B*Vf subject to the condition in Equation
12, first note that the matrix V is symmetric and
positive-definite. This follows from the observation that
Vs a Gram matrix.

Theorem 2: The matrix V defined in Equation 13 is the

Gram matrix of by, j = 1,2,...,.m, where
and P, is the orthogonal projection on the linear span

of {1,820 Bn}

- Proof: It is well known? that
Pf = i <t g> i Zi g
= K="1
where
(Z") =
Hence,
{Pgh;, h;>
Note that, as
(Pt h) = (i Ph)
and
PePs =Py
it follows that
Chy, B> = Chy, by — 2( Py, by + (Pghy, Pohy

=g 8"
= (WtZ_-lW),"i

fheF

_<h1r ;) <P hu j>
Therefore
u ;> <hu ;> Wtz_1w
=N—-—WZ W=V [ |

Hence f can be replaced by V7'y in B'Vf and
Equation 12, and it can be found that minimizing g*Vp
subject to the condition in Equation 12 is equivalent
to minimizing y'V ™y subject to the condition

yeA=A - W'Z27'% (14)
The minimum always exists, because f(y) = 7'V ™ "y is
a continuous function on the compact subset A of the
m-dimensional Euclidean space. Actually, as V7' is
symmetric and positive-definite, the minimum is
unique.

Therefore, the solution of Problem 1” can be found
in three steps:

e Find yeA such that 'V ™'y is minimal.
e Compute =V 7'y
o Compute x =Z (X — W),
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Step 1 above is the well known quadratic programming
problem in nonlinear programming; standard techniques
can be used to solve this problem (see, for example,
Reference 24, pp 437—441). Step 2 and Step 3 are
straightforward. The matrices Z, N and W are
constructed using the foliowing formulas.

Huy—aP3u—a) —(u—a) . oy <y

(&) = {g(uj —a)® f U = u:

Cha by = {g(v,. -3y, —a)—(y,—a)  w<y

Hy; — a)? Vi=Y;

(o> = {%(u; —alBly—a) —(y—a) <y

Hy - alBly—a =y —a)) gy
IMPLEMENTATION

The algorithm has been implemented in pascat for both
cubic spline functions and 2D cubic spiine curves. Some
examples are shown in Figures 2 and 3. In Figure 2a,
the profile of a girl taken from Reference 25, p 164, is
shown. A nonuniform cubic spline function that
interpolates 20 points taken from the profile is shown
in Figure 2b. As some of the fitting points vary rapidly,
there is an undesirable oscillation between points b
and d. By the specification of three intervals [6.0, 7.0],
[5.0, 5.5] and [5.0, 5.2} between a and b, b and ¢, and
c and d, respectively, and the construction of a function
that interpolates the given points and passes through
the three specified intervals, a curve close to the given
profile is obtained (see Figure 2¢). The shape of the
interpolating curve can be further improved by
reducing the intervals to smaller intervals, or shifting
the intervals to more appropriate locations (see
Figure 2d). Note that, if an interval is reduced to a
single point, it simply becomes an interpolation point
of the curve (see Figure 2d}.

Examples for 2D cubic spline curves are shown in
Figure 3. A uniform 2D cubic spline curve interpolating
23 points taken from the profile shown in Figure 3a is
shown in Figure 3b. Several severe osciflations occur.
By the specification of four rectangular regions in the
related areas, a much better curve is obtained (see
Figure 3c¢). The curve is then further improved by the
reduction of the intervals to either smaller intervals, or
single points (see Figure 3d). Note that, for an interval
to be reduced to a point, a simple procedure must be
written so that the value of the curve at a particular
knot can be displayed on the screen.

CONCLUSIONS

The problem of fitting uncertain data using cubic spline
curves has been studied. An algorithm is presented for
the construction of a cubic spline curve that interpolates
specified data points at some knots, and passes through
specified rectangular regions at some other knots, with
minimum energy at each of its components. This
approach allows the user to construct a fitting curve
with satisfactory shape when some of the fitting points
are uncertain, without the need of many trial-and-error
iterations.
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Figure 2. Examples of fitting using cubic spline functions
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