
Approximate Geodesics on Smooth Surfaces of

Arbitrary Topology

Shuhua Lai1 and Fuhua (Frank) Cheng2

1 Department of Mathematics & Computer Science,
School of Engineering, Science and Technology,

Virginia State University, Petersburg, VA 23806, slai@vsu.edu
2 Graphics & Geometric Modeling Lab,

Department of Computer Science,
University of Kentucky, Lexington, KY 40506, cheng@cs.uky.edu

Abstract. This paper introduces a new approach for computing large
number of approximate geodesic paths from a given point to all directions
on a 3D model (mesh or surface) of arbitrary topology. The basic idea
is to unfold the 3D model into a flat surface so that the geodesic from
a given point in a given direction can be obtained simply by drawing
a straight line from the given point along the given direction on the
unfolded surface. Hence our method does not require setting up any
linear systems, nor any expensive matrix computation, but is simply done
by iteratively extending the geodesic path along the given direction until
the geodesic path reaches a certain length. The iterative process proceeds
with a linear complexity. Therefore the new approach is very fast and can
be used for meshes with large number of vertices. The smooth surface
representation scheme used in this paper is Catmull-Clark subdivision
surfaces, but the same idea can be applied to other subdivision schemes
as well. Some test results obtained using this method are included. They
show the effectiveness of our approach.

1 Introduction

In mathematics, a geodesic is a generalization of the notion of a “straight line”
to “curved spaces”. In the presence of a metric, a geodesic is defined to be
(locally) the shortest path between two points in the space. In the presence of
an affine connection, a geodesic is defined to be the curve whose tangent vectors
remain parallel if they are transported along it. The computation of geodesic
paths is needed in many computer graphics applications. As a matter of fact,
recent research in finding algorithms for robot motion, terrain navigation and
surface cutting has resulted in a number of interesting variants of the shortest
path problem. However, most of the research work deals with the shortest path
between two points in three dimensions in the presence of polyhedral obstacles.
In this paper we present an approach to find geodesic paths from a given point
along any given directions on smooth surfaces of arbitrary topology.

Subdivision surfaces [1] have become popular recently because of their ca-
pability in modeling/representing any complex shape with only one surface and

because of their relatively high visual quality, numerical stability, simplicity in
implementation. Subdivision surfaces cover both parametric forms [2, 3] and dis-
crete forms. Parametric forms are good for design and representation and dis-
crete forms are good for machining and tessellation (including FE mesh gener-
ation). Therefore we have a representation scheme that is good for almost all
applications. Geodesic computation techniques using subdivision surfaces as a
representation scheme certainly are needed for subdivision surface based model-
ing/design.

In this paper we describe a new approach for computing approximate geodesic
paths from a given point to all directions on a 3D model (mesh or surface) of
arbitrary topology. The basic idea is to unfold the 3D model into a flat surface
so that the geodesic from a given point in a given direction can be obtained
simply by drawing a straight line from the given point along the given direction
on the unfolded surface. Hence our method does not require setting up any lin-
ear systems, nor any expensive matrix computation, but is done by iteratively
extending the geodesic path along the given direction until the geodesic path
intersects with itself or reaches a certain length. The iterative process proceeds
with a linear complexity. Therefore the new approach is very fast and can be used
for meshes with large number of vertices. The geodesic computation algorithm
presented in this paper is obtained using the concept of Catmull-Clark subdi-
vision surfaces, but the same idea can be applied to other subdivision schemes
as well. The capability of the new approach is demonstrated with test examples
shown in the paper.

2 Previous Work

2.1 Related work on computing geodesics

Mitchell, Mount, and Papadimitriou (MMP) [4] first presented an efficient im-
plementation of the exact geodesic algorithm for triangular mesh in 1987. Their
algorithm has O(n2 logn) worst-case time complexity, but in practice can work
with million-node meshes in reasonable time. The MMP algorithm [4] provides
an exact solution for the “single source, all destinations” shortest path problem
on a triangular mesh. Their algorithm partitions each mesh edge into a set of in-
tervals (windows) over which the exact distance computation can be performed
automically. These windows are propagated in a “continuous Dijkstra”-like man-
ner. An exact geodesic algorithm with worst case time complexity of O(n2) was
described in [6]. Kapoor [7] described an algorithm for the “single source, single
destination” geodesic path between two given mesh vertices, in O(n log2 n) time.

Approximate geodesics with guaranteed error bounds can be obtained by
adding extra edges into the mesh and running Dijkstra on the one-skeleton of this
augmented mesh [8]. Many extra edges are required to obtain accurate geodesics.
Many of these methods require special processing of triangles with obtuse an-
gles. In 2005, a fast algorithm for exact or approximate geodesic computation
was presented in [9]. This new approach shows that MMP-based approximation
algorithm yields more accurate solutions than the fast-marching method when

applied to meshes. They proved that the new algorithm runs in O(n logn) time
even for small error thresholds. Kobbelt etc. also presented an algorithm for
efficient and accurate computation of geodesics [10]. This nice algorithm can
handle arbitrary, possibly open, polygons on the mesh to define the zero set of
the distance field.

An algorithm for computing geodesics on smooth surfaces can be found in [5],
which introduces a novel approach for rapidly computing a very large number
of geodesics on a smooth surface. Their idea is based on the phase flow method
[5].

2.2 Smooth surface representation using subdivision surfaces

Given a control mesh, a subdivision surface is generated by iteratively refining
(subdividing) the control mesh to form new and finer control meshes. The refined
control meshes converge to a limit surface called a subdivision surface. So a
subdivision surface is determined by the given control mesh and the mesh refining
(subdivision) process. The control mesh of a subdivision surface can contain
vertices whose valences (numbers of adjacent edges) are different from four.
Those vertices are called extra-ordinary vertices. Popular subdivision surfaces
include Catmull-Clark subdivision surfaces (CCSSs) [1], Doo-Sabin subdivision
surfaces and Loop subdivision surfaces.

Subdivision surfaces can model/represent complex shape of arbitrary topol-
ogy because there is no limit on the shape and topology of the control mesh of
a subdivision surface. Subdivision surfaces are intrinsically discrete. Recently it
was proved that subdivision surfaces can also be parametrized [2]. Therefore,
subdivision surfaces cover both parametric forms and discrete forms. Paramet-
ric forms are good for design and representation, discrete forms are good for
machining and tessellation (including FE mesh generation). Hence, we have a
representation scheme that is good for all graphics and CAD/CAM applications.
Subdivision surfaces by far are the most general surface representation scheme.
They include non-uniform B-spline and NURBS surfaces as special cases. In this
paper we only consider objects represented by CCSSs. But our approach works
for other subdivision schemes as well.

3 Preliminaries

In this section we discuss some properties of geodesics of a given mesh M or
a given smooth surface S. The proof of these properties can be found in [4, 5].
These properties are the theoretical foundation of our approach.

– Property 1: There exists a geodesic path from a given point to any other
point on the given mesh M or the given smooth surface S.

– Property 2: When M or S is unfolded, a geodesic path of M or S becomes
a straight line segment.

– Property 3: If S is continuous everywhere, so is any geodesic path of S.

– Property 4: When a geodesic path of S passes through a point of S, the
geodesic path has the same tangent vector on the left side of the point as
the right side of the point.

– Property 5: Geodesic paths starting at the same point P , but going along
different directions may intersect. If they do intersect, say at point Q, then
the lengths of the geodesic paths between P and Q are the same, even though
they go different directions starting from point P .

4 Basic Idea

Given a mesh M , we can find its limit surface S using Catmull-Clark subdivi-
sion. The limit surface S is a smooth surface which has C2 continuity almost
everywhere except at a few extra-ordinary points. The task of this paper is to
find an approximate geodesic path from a given point P on S along any initial
direction vector W .

The basic idea of our approach is to unfold the surface S so that the geodesic
path can be achieved directly using a straight line from the given point P along
the given vector W in the flattened surface. We can compute S from a given
sparse 3D mesh M using subdivision surface parametrization techniques. The
question is how to flatten the smooth surface S. This is done with the following
three steps.

– Discretize S to get a dense mesh S̄;

– Unfold S̄ along a given initial direction;

– Compute geodesic paths on S̄.

As they will be shown below, all the three steps can be directly computed,
without setting up any linear system or applying any costly matrix computation,
but only uses linear combination of vertices locally. Hence this is a linear local
method which is very easy to implement and can deal with meshes of large
number of vertices effectively.

5 Discretization of a smooth surface S

In this section we show how to discretize a smooth surface in order to get a dense
mesh approximation. Here we assume the smooth surface is a Catmull-Clark
subdivision surface (CCSS). Therefore we can evaluate an ordinary or extra-
ordinary CCSS patch and its tangent vectors at any given point of the smooth
surface. These techniques are needed in the construction of the approximating
polyhedron for the surface unfolding process. Several approaches [2, 3] have been
presented for exact evaluation of an extra-ordinary patch at any parameter point
(u, v). We use the parametrization technique presented in [3] here. This method
is more efficient for both surface and tangent evaluation because it employs less
eigen basis functions in its representation.

The parametrization technique presented in [3] works for general CCSS’s,
i.e., for a given vertex point V, a new vertex point V′ is computed as:

V′ = αnV + βn

n
∑

i=1

Ei + γn

n
∑

i=1

Fi

where αn, βn and γn are positive numbers and αn+βn+γn = 1, and it is based
on an Ω−partition of the parameter space [2, 3]. The value of an extra-ordinary
patch is evaluated as follows:

S(u, v) = WTKm

n+5
∑

j=0

λm−1
j Mb,j G (1)

where n is the valance of the extra-ordinary patch 3, W is a vector containing
the 16 B-spline power basis functions:

WT (u, v) = [1, u, v, u2, uv, v2, u3, u2v, uv2, v3,

u3v, u2v2, uv3, u3v2, u2v3, u3v3] ,

K is a diagonal matrix:

K = Diag(1, 2, 2, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 32, 32, 64),

and m and b are defined as follows:

m(u, v) = min{⌈log 1

2

u⌉, ⌈log 1

2

v⌉} ,

b(u, v) =







1, if 2mu ≥ 1 and 2mv < 1
2, if 2mu ≥ 1 and 2mv ≥ 1
3, if 2mu < 1 and 2mv ≥ 1 .

λj , 0 ≤ j ≤ n+ 5, are eigenvalues of the Catmull-Clark subdivision metrix and
Mb,j , 1 ≤ b ≤ 3, 0 ≤ j ≤ n+ 5, are matrices of dimension 16× (2n+ 8). λj and
Mb,j are independent of (u, v) and their exact expressions are given in [3]. G is
the vector of control points (See [3] for their labeling).

One can compute the derivatives of S(u, v) to any degree simply by differen-
tiating W (u, v) in Eq. (1) accordingly. For example,

∂

∂u
S(u, v) = (

∂W

∂u
)T Km

n+5
∑

j=0

λm−1
j Mb,j G. (2)

The value and tangents at an extra-ordinary vertex are simply the limit points
of the corresponding equations in (2) when (u, v) → (0, 0):

S(0, 0) = [1, 0, · · · , 0] ·M2,n+1 ·G
Du(0, 0) = [0, 1, 0, 0, · · · , 0] ·M2,2 ·G
Dv(0, 0) = [0, 0, 1, 0, · · · , 0] ·M2,2 ·G

(3)

3 Eq. (1) works for regular patches as well, i.e., when n = 4.

where Du(0, 0) and Dv(0, 0) are the direction vectors of ∂S(0,0)
∂u

and ∂S(0,0)
∂v

,
respectively. As a result, the normal vector at (0, 0) is

N(0, 0) = Du(0, 0)×Dv(0, 0).

With the availability of direct evaluation of Catmull-Clark subdivision sur-
faces, one can discretize a CCSS patch by patch to any accuracy with a dense
mesh approximation. Note that after the discretization, the resulting mesh S̄

consists of only quadrilaterals, which is convenient for us to unfold the mesh.

6 Unfolding S̄ in a given direction

Once we have an approximate representation of the smooth surface, we can
unfold the mesh to get a flattened surface so that the geodesic path can be
obtained easily. As we know, meshes with arbitrary topology may not be able
to be flattened without distortion. So we cannot find the geodesic paths if the
surface is distorted. Fortunately, we do not need to unfold the whole surface.
Only the patches of a slice of S̄ are needed to be unfolded in the process of
computing the geodesic paths. This is done as follows.

Fig. 1. Unfold the patches along the given direction W .

Given a starting point P and a starting direction W (see Figure 1), we need
to find the geodesic path from P along the direction W . First we rotate the
surface patch that P and W are on (i.e., ∆BPA in Figure 1) so that it is on the
same plane as its neighboring patch, which is patch ∆ABD in Figure 1. After
the rotation around line AB, point P goes to point Q. Because now ∆QBA

and ∆ABD are on the same plane, we can find the intersection points I and
E. Points I and E are saved to a list because they are part of the geodesic
path. Again starting from point E and along the direction of vector (E − I),
we repeat the above process to find intersection point F , which is again part of

the geodesic path and should be saved into the list. Note that here ∆ABD and
∆BCD may not lie on the same plane. By repeating the same process, a slice
of surface patches is unfolded and a straight line can be determined from the
unfolded surface patches of the slice.

Fig. 2. Unfold the patches when the geodesic passing vertex V .

The above process would not work when a geodesic path passes through a
vertex of the underlying approximate mesh S̄ of S. See Figure 2. This is because
we need an axis when we rotate a patch to flatten the patch. When a geodesic
path passes through a vertex, we cannot use the above method to find the next
segment of the geodesic path because we do not know which patch we should
use to proceed next. We need a new approach and it is done as follows.

From the properties of geodesic paths, we know that a geodesic path is con-
tinuous if the 3D surface is continuous everywhere. Hence if a smooth geodesic
path passes through vertex V (see Figure 2), then the geodesic path has the
same tangent vector to the left and to the right of the vertex V . As a result,
if the discretization of S is dense enough, then the entering segment to V and
the departing segment from V of the geodesic path are on the same plane as
the normal vector of the smooth surface at the point V . In other words, if N is
the normal vector of S at V , then ∆PNV and ∆NQV are on the same plane
assuming V Q is the departing segment of the geodesic path from V . With this
observation, we can determine the next segment of the geodesic path and pro-
ceed and repeat the process using one of the above two approaches, depending
on if the geodesic path passes through a vertex of S̄.

7 Computing geodesic paths on S̄

Once we know how to unfold patches of S̄, the process of computing the geodesic
paths is straightforward. Again we will use Figure 1 and Figure 2 to illustrate
how to do the computation efficiently.

To get Q from rotating P about the line segment AB in Figure 1, one can
use the following formula

Q =









x2(1− c) + c, xy(1− c)− zs, xz(1− c) + ys, 0
yx(1 − c) + zs, y2(1− c) + c, yz(1− c)− xs, 0
xz(1− c)− ys, yz(1− c) + xs, z2(1− c) + c, 0
0, 0, 0, 1









∗ P,

where c = n1·n2

||n1||.||n2||
, s = n1×n2

||n1||.||n2||
, and ||(xyz)|| = 1. x, y and z are the

normalized coordinate components of the vector B − A. n1 and n2 are the
normal vectors of ∆BPA and ∆ADB, respectively, i.e., n1 = PA × PB and
n2 = AD ×AB.

When the geodesic path passes through a vertex V of S̄, to find Q from P

(See Figure 2), we first need to calculate the normal vector N of S at V , which
can be precisely obtained using the formula given in the previous section. Once
N is known, according to the properties of geodesics, we have that the four
points P , N + V , Q and V are coplanar. Hence to find Q, we just need to find
the intersection point of the line segment AB and the 2D plane determined by
the three points P , N + V and V . The line segment AB is the diagonal line
of a neighboring patch. Because we do not know which patch the line segment
AB belongs to, we need to loop through all the neighboring patches of vertex
V . Because there is one and only one such neighboring patch (other than the
one that P belongs to) whose diagonal line segment intersects the plane defined
by the three points P , N + V and V , the loop will stop once the intersection
point Q is found. The intersection point of the line segment AB and the plane
(P,N+V, V) can be computed by first computing the following parameter value:

s = −
n ·w

n · u
,

where n = (P − V) × N , w = A − V and u = B − A. If 0 <= s <= 1, the
line segment AB and the plane have an intersection point Q = A + s(B − A).
Otherwise, there is no intersection point between them.

8 Test Results

The proposed approach has been implemented in C++ using OpenGL as the
supporting graphics system on the Windows platform. Quite a few examples
have been tested with the method described here. All the examples have extra-
ordinary vertices. Some of the tested results are shown in Figure 3. For all the
test cases shown in this paper, the original mesh, and a bundle of geodesic paths
on the smooth 3D models are given. All geodesic paths are shown within a certain
length only in the examples.

The new geodesic computation method can handle meshes with large number
of vertices in a matter of almost real time on an ordinary PC (3.2GHz CPU, 2GB
of RAM). For example, each of the smooth models shown in Figure 3 has more
than one million vertices after discretization. It takes less than a second to find all

(a) Original Mesh (b) Geodesic Paths (c) Geodesic Paths

(d) Original Mesh (e) Geodesic Paths

(f) Original Mesh (g) Original
Mesh

(h) Original Mesh

(i) Geodesic Paths (j) Geodesic
Paths

(k) Geodesic Paths

Fig. 3. Examples of geodesic paths starting from a given point in different directions.

the geodesic paths for each given model. Hence the new geodesic computation
method is suitable for interactive applications, such as shape design, terrain
navigation and so on.

9 Summary and Future Work

A new approach for computing large number of approximate geodesic paths
from a given point to all directions on a 3D model (mesh or surface) of arbitrary
topology is presented. The basic idea is to unfold the 3D model into a flat
surface so that the geodesic from a given point in an initial given direction can
be obtained simply by drawing a straight line from the given point along the
given direction on the unfolded surface. The new method is fast and does not
require any costly matrix computation, or linear system solving in the process of
geodesic computation, hence it is very easy to implement. The new approach also
is very fast with a linear time complexity and hence can be used for meshes with
large number of vertices. Test examples show the effectiveness of our approach.

One of our future research objectives is to apply this new approach to find
the geodesic path between two points of a smooth surface. Another subject of
our future research is to compare the performance of the new approach with
other geodesic computation methods in the literature to study its effectiveness
and possible improvements.

ACKNOWLEDGEMENT

This work is supported by National Science Foundation of China (61020106001,
61170324), National Science Council of ROC (NSC-100-2811-E-007-021), and a
joint grant of National Tsinghua University and Chang-Gung Memorial Hospital
(101N2756E1).

References

1. Catmull E, Clark J, Recursively generated B-spline surfaces on arbitrary topolog-
ical meshes, Computer-Aided Design, 1978, 10(6):350-355.

2. Stam J, Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Pa-
rameter Values, Proceedings of SIGGRAPH 1998:395-404.

3. Shuhua Lai, F. Cheng, Parametrization of General CCSSes and its Applications,
Computer Aided Design & Applications, 3, 1-4, 2006.

4. J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic
problem. SIAM J. Comput., 16(4):647-668, 1987.

5. Lexing Ying and Emmanuel J. Candésk, Fast geodesics computation with the phase
flow method, Journal of Computational Physics, Volume 220, Issue 1, 20 December
2006, Pages 6-18.

6. Chen, J., and Han, Y. Shortest paths on a polyhedron; part I: computing shortest
paths. Int. J. Comp. Geom. & Appl., 6 (2), 127-144. 1996.

7. Kapoor, S., Efficient computation of geodesic shortest paths. In Proc. 32nd Annual

ACM Symp. Theory Comput., 770-779, 1999.

8. Lanthier, M., Maheshwari, A., and Sack, J.-R., Approximating weighted shortest
paths on polyhedral surfaces. In Proc. 13th Annu. ACM Symp. Comput. Geom.,
274-283, 1997.

9. Surazhsky, V. and Surazhsky, T. Kirsanov, D. and etc., Fast exact and approximate
geodesics on meshes,

10. David Bommes and Leif Kobbelt, Accurate Computation of Geodesic Distance
Fields for Polygonal Curves on Triangle Meshes, In Vision Modeling and Visual-

ization, 2007.

