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ABSTRACT 
 

In this paper, we present a G2 interpolating scheme for Polar surfaces, so that polar 
surfaces can be used in high precision CAD/CAM applications as well. The new scheme 
is Bezier crust based, i.e., the interpolating surface is generated by parametrically 
attaching an especially selected bi-degree 5 Bezier surface to a Catmull-Clark 
subdivision surface. While Bezier crust based scheme handles quad faces only, we 
show that through a conversion process, we can handle triangular faces in the Polar 
part as well. Curvature continuity of the generated limit surface of our new scheme is 
consistent with the corresponding Polar surface. In case of a PCCS, the generated limit 
surface of our new scheme is G2 on the Polar part. 

 
Keywords: subdivision, Polar surface, interpolation, PCCSS. 

1 INTRODUCTION 

Subdivision surfaces have been widely used in CAD, gaming and computer graphics. Catmull-Clark 
subdivision (CCS) [2], based on tensor product bi-cubic B-Splines, is one of the most widely used 
subdivision schemes. The surfaces generated by the scheme are C2 continuous everywhere except at 
extraordinary points, where they are C1 continuous. A shortcoming inherent in CCS surfaces is the 
ripple problem, that is, ripples tend to appear around an extraordinary point with high valence. In the 
past, research focused on improving curvature distribution at extraordinary points.  However, with 
quad mesh structure of CCS surfaces, ripples could not be avoided in high valence cases. To handle 
this artifact, Polar surface are studied by a number of researchers.  

A Polar surface has a quad/triangular mixed mesh structure. A bi-cubic Polar subdivision scheme 
is presented in [6] which sets up the control mesh refinement rules for Polar configuration so that the 
limit surface is C1 continuous and curvature bounded. A Polar surface handles high valence cases well, 
but there are some issues to solve for connecting them to Catmull-Clark meshes. For instance, because 
of the mismatch on the mesh between radial subdivision and Catmull-Clark subdivision, in [7],  given a 
polar vertex of valence n, at the kth level, its generalized bi-cubic subdivision scheme generates 2k 
subfaces and expands the valence to 2kn. Recently a new subdivision scheme was developed in [11]. 
This new scheme, named PCCSS, subdivides triangular faces in Polar embedded Catmull-Clark (PCC) 
mesh without generating exponential number of subfaces and without doubling valences in each 
subdivision step, and its limit surface is G2 at Polar extraordinary points.  
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The polar surface can handle high valence very well. However, all current polar subdivision 
schemes are approximating, i.e. the generated limit surface will not interpolate the given control mesh. 
Given the complexity of quad/triangular mesh structure, no known interpolation scheme was 
developed yet. But, since many applications require an interpolation scheme, Polar surface is not well 
adopted in CAD/CAM. In this paper, we present a G2 interpolating scheme on Polar surface, such that 
it can be used in high precision CAD/CAM application. Our new scheme is based on Bezier crust 
[12][13], where an interpolating surface was generated by parametrically adding Catmull-Clark 
subdivision surface and a special selected bi-degree 5 Bezier surface. Although scheme of Bezier crust 
handles quad faces only, we show by conversion, we can handle triangular faces in Polar mesh as well. 
The curvature continuity of generated limit surface of our new scheme is consistent with the 
corresponding Polar surface, in case of the PCCS [11], it is G2 on Polar extraordinary points, C1 at CCS 
extraordinary points, and everywhere else C2. 

 

Figure 1. A Polar example. Left: Polar mesh; middle: two views of PCCS surface; 
right: two views of our new Interpolation surface 

The rest of the paper is organized as follows. Section 2 reviews Polar surface and Bezier crust, 
Section 3 introduces our new G2 interpolating scheme on Polar surface, especially on PCCS, Section 4 
evaluates the behavior of the new interpolation surface, Section 5 concludes. 

2 POLAR SURFACE AND PCCSS 

In this section, we review earlier works on Polar surfaces.  

A Polar surface has the following properties on its mesh structure: faces adjacent to extraordinary 
points are triangular, all other faces are regular. A typical Polar mesh is shown in Fig. 2(a). A Polar 
surface has a quad/triangular mixed mesh structure. [8] introduces concept of Polar surface. A bi-
cubic Polar scheme is presented in [6] that sets up the control mesh refinement rules for Polar 
configuration such that the limit surface is C1 continuous and curvature bounded. A C2 Polar surface is 
shown in [9] by modifying weights of the Polar subdivision for different valences. 

Traditional Polar surface can handle high valence ripple problems inherent in Catmull-Clark 
Subdivision (CCS) surfaces very well, but it is difficult to design a traditional Polar surface for a 
complex object with thousand of control points. Efforts are made to combine Polar meshes and CCS 
meshes. In [7], mesh refinement on Polar part is done in two steps at the kth level, (1) k times radially, 
then (2) k times circularly. This scheme doubles valence in each subdivision steps, i.e. given a Polar 
vertex of valence n, after k subdivisions, the Polar valence is expanded to 2kn. Recently a new scheme 
is presented in [11], this new scheme works on Polar/CCS hybrid mesh structure (as shown in Fig. 
2(c)), named as Polar Embedded Catmull-Clark Subdivision (PCC) mesh. PCC mesh allows extraordinary 
points to exist also in the quad mesh part. The new subdivision scheme PCCS [11] comes with the 
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following properties and improvements: (1). In each subdivision step, the Polar valence does not 
double, instead, it remains the same. (2). Only O(k) sub-surfaces are generated after k subdivisions. (3). 
A natural C2 join between Polar part and CCS part. 

 

 

Figure 2. From left to right: Polar mesh, CCS mesh, PCC mesh 

The subdivision scheme of PCCSS works as follows. Given an arbitrary mesh, first step is to 
convert it to CCS mesh with all quad faces and no two extraordinary points neighboring to each other, 
this is done by up to twice CCS subdivisions. Then, we replace faces surrounding high valence 
extraordinary points with Polar structure shown in Fig. 2(a). The obtained PCC mesh structure is 
shown in Fig. 2(c). 

PCC mesh is more generalized than both CCS mesh and Polar mesh. If PCC mesh has Polar 
extraordinary points, then it is Polar mesh, and if PCC mesh has only CCS extraordinary points, then it 
is CCS mesh. So in this paper, we focus our work on the subdivision surface PCCSS on PCC mesh. 

 

Figure 3. Convert odd Polar valence to even by one subdivision 

The Polar extraordinary point can have a valence of even or odd. Since the odd valence is more 
difficult to achieve in terms of curvature continuity, a preprocessing step is performed by a special 
subdivision (Fig. 3). The new edge points, face points and vertex points of a Polar face with valence n 

are defined by CCS rules on arbitrary topology, e.g. new face point P33′ =
1

3
(V + P32 + P33), new edge 

point P32′ =
1

4
(V + P32 + P31′ + P33′), and new vertex point V′ =

n−2

n
V +

1

n
E̅ +

1

n
F̅′ (where E̅ is the average of 

original edges points, and F̅′ is the average of new face points). In contrast with CCS, we divide the 

Polar face into 4 sub-faces (the right of Fig. 3) which maintains the Polar structure and doubles the 
valence of Polar extraordinary point. With this special subdivision, the new faces points generated will 
be treated as edge points of new Polar triangular faces.  

After valence conversion, the PCCSS uses Guided U-subdivision (GUS) for consequent subdivisions. 
The GUS is shown in Fig. 4. Each GUS will generate 5 layers of control points, control points in the last 
three layers (red dots in Fig. 4(a)) are generated by CCS equivalent U-subdivision on the first three 
layers of last subdivision step (black circles in Fig. 4(a)). The control points in the first layer (blue dots 
in Fig. 4(a)) are selected from the dominative control meshes (as shown in Fig. 4(b). The control points 
in the second layers of are selected by a process called virtual U-Subdivision, i.e. these control points 
are reverse calculated from the new 1st layer control points and the last three layer control points in 
previous GUS.  
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Figure 4. From left to right: (a) Guided U-Subdivision (b) select 1st layer control points in GUS 

 

In [11], it shows that the limit surface of PCCSS as above is C2 everywhere except at extraordinary 
points, where it is G2 at Polar extraordinary points and C1 at CCS extraordinary points.  

3 A HEURISTIC INTERPOLATION SCHEME ON PCCSS 

Subdivision schemes can be classified into two types. If the original vertices in the control mesh is the 
same as its corresponding limit points after subdivisions, we call such scheme interpolating, 
otherwise, the scheme is approximating. Current Polar schemes are all approximating. Although Polar 
surface can handle high valence ripples common in Catmull-Clark Subdivision surface, for high 
precision CAD/CAM usage, an interpolating scheme is highly desirable. Due to the triangle/quad 
mixed mesh structure, no known interpolating scheme was developed so far. In this section, we 
present a heuristic G2 interpolation scheme on PCCSS. 

In PCCSS, A PCC mesh can be separated into two parts, Polar part and CCS part. The limit surface 
on CCS part is exactly the same as that of the CCSS. So it makes it possible to construct an 
interpolating scheme at quad faces the same as the interpolating scheme for CCSS.   Interpolation of 
CCSS is traditionally performed by solving a global linear system of  

Ax=b   (3.1) 

Where A is the coefficient matrix determined by CCS subdivision rules, x is the column vector of 
control points to be determined, and b is the column vector of data points in the given data mesh [5]. 
Stationary iterative methods like Jacobi, Gauss-Seidel or Successive Over-relaxation can be used to 
solve equation (3.1). However when data set is large, the convergence rate of above methods is slow. 
Some faster iterative methods [1][3][4][10] were developed to improve the convergence rate. However, 
the iterative methods above suffer excessive undulation [5]. To improve the shape of interpolation 
surface, fairing techniques are required and the final shape of interpolation surface are non-
predictable. Recently, a direct interpolation scheme called Bezier Crust is introduced in [12]. The idea 
of new scheme is to apply a bi-degree 5 piecewise specially selected Bezier Surface on CCSS, such that 
the interpolation surface can be generated in one step instead of iterations. 

Piecewise bi-degree 5 Bezier surface is the necessary condition to obtain a G2 limit surface, but its 
computation is generally costly and not a simple task. Bezier crust is a simplified Bi-degree 5 Bezier 
surface, in that its 1st and 2nd order derivatives vanishes at boundaries of each patch. Given a CCS mesh 
M, The limit surface of each face f of M (regular or extraordinary) can be represented in parametric 
form 𝑆(𝑢, 𝑣). For each f, Δ𝑃0 , Δ𝑃1, Δ𝑃2 𝑎𝑛𝑑 Δ𝑃3 are defined as the difference vectors between the corner 
control points and their corresponding CCS data points, respectively. In order to interpolate the 
control points, a bi-quintic Bezier crust  ∆𝑆(𝑢, 𝑣) is defined as follows, 

Δ𝑆(𝑢, 𝑣) = ∑ ∑ bi,5(u)
5

𝑗=0

5

𝑖=0
bj,5(v)Δ𝑃𝑖,𝑗               (3.2). 
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With Δ𝑃𝑖,𝑗 takes value of Δ𝑃0 , Δ𝑃1 , Δ𝑃2 𝑎𝑛𝑑 Δ𝑃3.   Δ𝑃𝑖,𝑗 = Δ𝑃0 if ∈ [0,2] & 𝑗 ∈ [0,2] ;   Δ𝑃𝑖,𝑗 = Δ𝑃1 if 𝑖 ∈
[0,2] & 𝑗 ∈ [3,5] ; Δ𝑃𝑖,𝑗 = Δ𝑃2 if 𝑖 ∈ [3,5] & 𝑗 ∈ [0,2] ; Δ𝑃𝑖,𝑗 = Δ𝑃3 if 𝑖 ∈ [3,5] & 𝑗 ∈ [3,5] .  Δ𝑃0, Δ𝑃1 , Δ𝑃2 𝑎𝑛𝑑 Δ𝑃3 are 

the difference vectors at four corners of a CCS face (Fig. 5).  

With offsetting Bezier crust ∆𝑆(𝑢, 𝑣) defined, the interpolating parametric surface �̅�(𝑢, 𝑣)  can be 
expressed as follows: 

�̅�(𝑢, 𝑣) = 𝑆(𝑢, 𝑣) + ∆𝑆(𝑢, 𝑣)                                  (3.3) 

 

  

Figure 5. Difference Vectors between control points and limit points, from left to right:     
(a) regular face (b) extraordinary face (c) offsetting Bezier Crust 

The offsetting Bezier Crust has the following properties: 

1) 1st order and 2nd order derivatives vanish across the face boundaries and at 4 corners. 

2) Underlying subdivision rules independent, can handle arbitrary quad subdivision surfaces. 

3) C2 on each Bezier Crust limit face. 

The new CCS interpolation surface obtained by equation (3.3) has the following properties: 

1) C2 everywhere except at extraordinary points, where it is C1 continuous 

2) Interpolates not only data points, but also the surface normal and curvature at these data 
points. 

Since PCCSS has the same limit surface as CCS at quad face part, so on quad faces, equation (3.3) 
can be applied to obtain its interpolation limit surface. For Polar faces, these faces are triangular,  
equation (3.3) cannot be applied directly. However, we note that the PCCSS treats Polar faces as quad 
faces by technique of vertex splitting (Fig. 6).  

 

Figure 6. Polar face conversion by vertex splitting 

 

By vertex splitting in PCCSS, a Polar extraordinary point V is duplicated at each Polar face, such 
that the Polar face can apply Bezier Crust as well. The limit surface of each Polar face f in PCCSS can be 
represented in parametric form 𝑆(𝑢, 𝑣)|𝑝𝑜𝑙𝑎𝑟 . For each f, Δ𝑃0, Δ𝑃1 , 𝑎𝑛𝑑 Δ𝑃2 (Fig. 7(a)) are defined as the 

difference vectors between the corner control points and their corresponding PCCSS limit points  
respectively. By vertex splitting of Δ𝑃0 (Fig. 7(b)), we obtain 4 difference vectors on each converted quad 
face (Fig. 7(c)).  In order to interpolate the difference vectors at corners of Polar face f, a bi-quintic 
Bezier crust  ∆𝑆(𝑢, 𝑣)|𝑝𝑜𝑙𝑎𝑟  is defined as follows, 
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Δ𝑆(𝑢, 𝑣)|𝑝𝑜𝑙𝑎𝑟 = ∑ ∑ bi,5(u)
5

𝑗=0

5

𝑖=0
bj,5(v)Δ𝑃𝑖,𝑗               (3.4). 

With Δ𝑃𝑖,𝑗 takes value of Δ𝑃0 , Δ𝑃1 , 𝑎𝑛𝑑 Δ𝑃2.   Δ𝑃𝑖,𝑗 = Δ𝑃0 if i ∈ [0,2] & 𝑗 ∈ [0,2] ;   Δ𝑃𝑖,𝑗 = Δ𝑃1 if 𝑖 ∈
[3,5] & 𝑗 ∈ [0,2] ; Δ𝑃𝑖,𝑗 = Δ𝑃2 if 𝑖 ∈ [3,5] & 𝑗 ∈ [3,5] .  Δ𝑃0, Δ𝑃1 , Δ𝑃2 𝑎𝑛𝑑 Δ𝑃3 are the difference vectors at four 

corners of a CCS face (Fig. 7).  

 

 

 

Figure 7.  From  left to right: (a) difference vectors on Polar face, (b) vertex splitting of difference 
vectors in (a),         (c)  bi-quintic offsetting Bezier Crust on Polar face 

With offsetting Bezier crust on a Polar face ∆𝑆(𝑢, 𝑣)|𝑝𝑜𝑙𝑎𝑟  defined, the interpolating parametric 

surface on a Polar face �̅�(𝑢, 𝑣)|𝑝𝑜𝑙𝑎𝑟   can be expressed as follows: 

 

�̅�(𝑢, 𝑣)|𝑝𝑜𝑙𝑎𝑟 = 𝑆(𝑢, 𝑣)|𝑝𝑜𝑙𝑎𝑟 + ∆𝑆(𝑢, 𝑣)|𝑝𝑜𝑙𝑎𝑟                                   (3.5) 

 

Given a PCC mesh, with equation (3.4) defining Bezier Crust on Polar face and equation (3.2) 
defining Bezier Crust on Quad face, one can construct a piecewise offsetting bi-quintic Bezier Crust on 
PCCSS to interpolate difference vectors between PCC mesh control points and their PCCSS limit points.  
By parametrically adding Bezier Crust to PCCS limit surface (equation (3.3) and (3.5)), one can obtain an 
interpolating limit surface with properties as follows, 

1) C2 continuous everywhere, except at extraordinary points, where it is G2 on Polar 
extraordinary points, C1 at CCS extraordinary points. 

2) It interpolates control points in PCC mesh, and interpolates the normals and curvature at 
their corresponding data points at PCCS limit surface. 

 

Figure 8. From left to right: (a) A PCC mesh of an airplane (b) enlarged plane head with Polar 
configuration, (c) interpolating limit surface with our new scheme on (b) 

 

Above we introduce our new interpolation scheme for PCCSS. Fig. 8 shows an airplane with Polar 
part on plane head, the new interpolating surface of plane head (Fig. 8(c)) is smooth and without 
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ripples. Since most Polar subdivision scheme uses vertex splitting to match quad and triangular faces 
and Bezier Crust is subdivision rules independent, the above methods can be applied to these scheme. 

4 IMPLEMENTATION AND ANALYSIS 

In previous section, we introduced the concept of our new interpolation surface for PCCSS. This new 
interpolation surface is generated by parametrically adding a piecewise offsetting Bezier Crust to PCCS 
limit surface. Given a PCC mesh M, for each (u,v) of quad face or converted Polar face (vertex splitting),  
the interpolating algorithm is implemented as follows: 

1) Compute S(u,v) limit point for each (u,v) 

2) Compute difference vectors on all control points in M 

3) Derive Bezier Crust on converted difference vectors 

4) Computer Δ𝑆(𝑢, 𝑣) on derived Bezier Crust 

5) Obtain �̅�(𝑢, 𝑣) by adding S(u,v) and Δ𝑆(𝑢, 𝑣) 

With the special selection of Bezier Crust, the computation of each limit point on interpolation 
surface only increase constant time O(1) to the computation of each PCCSS limit point. So the running 
cost of adding a Bezier Crust in our new scheme is not expensive.  

Fig. 9(a) shows a typical Polar mesh. Fig. 9(b) shows the interpolating surface generated by our new 
interpolation scheme. Fig. 9(c) shows the limit surface of Bezier Crust when it is shown standalone. We 
see that when Bezier Crust is drawn standalone, the limit surface is actually only G0 continuous. This 
is consistent with the duplications of control points at 4 corners. However, when we show the Bezier 
crust (Fig. 9(c)) parametrically added to the PCCSS limit surface of a flat mesh converted by projection 
of this Polar mesh onto (x,y) plane. We see that although the underlying PCCS limit surface of 
projected flat mesh has zero Gaussian curvature everywhere and Bezier crust is only G0 continuous, 
the parametrically added interpolating surface is smooth(Fig. 9(d)). 

 

Figure 9. From left to right:  (a) Polar mesh (b) new interpolating surface (c) Bezier Crust shown 
alone (enlarged)       (d) Bezier Crust is shown on projected flat PCCSS limit surface (enlarged) 

As stated in the last section, the new interpolating surface on PCC mesh has two properties. Here 
we provide a proof. Given a Polar face 𝑓𝑖  after vertex splitting (as shown in Fig. 10), We define 

D(i,j)(x, y)|𝑆 as partial derivative of ith and jth order with respect to u and v respectively at parametric 

value (𝑥, 𝑦) on PCCS surface 𝑆(𝑢, 𝑣), 𝑢, 𝑣 ∈ [0,1]. Similarly we can define  D(i,j)(x, y)|∆𝑆 and D(i,j)(x, y)|�̅� as 

the partial derivative at (𝑥, 𝑦) on Bezier Crust ∆𝑆(𝑢, 𝑣) and our new interpolating surface �̅�(𝑢, 𝑣). 
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Figure 10. Parametric Polar face after vertex splitting 

Property 1: Our new interpolating surface is C2 continuous everywhere, except at extraordinary 
points, where it is G2 on Polar extraordinary points, C1 at CCS extraordinary points. 

Proof: Since PCCS separate surface into two parts: CCS part and Polar part [11]. For CCS part, 
as proven in [12], interpolating surface maintains the continuity of its underlying CCS surface, 
which is C2 continuous everywhere, except at CCS extraordinary points, where it is C1 only. 
Next we show the surface continuity on Polar face part.  

For Polar part of PCCSS, it is C2 continuous everywhere and C2 continuous with its neighboring 
CCSS patches, except at Polar extraordinary points. So, as proven in [12], its interpolating 
surface by appending Bezier Crust is also C2 continuous everywhere, except at Polar 
extraordinary points.   

As illustrated in Fig. 10, a Polar face 𝑓𝑖 is converted to quad face with vertex splitting and can 
be (𝑢, 𝑣) parameterized.  The Polar extraordinary point on PCCSS can be represented by 𝑆(0, 𝑣), 
𝑣 ∈ [0,1]. With equation (3.4), the 1st order and 2nd order partial derivatives of Polar Bezier Crust 
∆𝑆(𝑢, 𝑣) has the following values at (0, 𝑣),   

D(1,0)(0, 𝑣)|∆𝑆 = 0,   D(0,1)(0, 𝑣)|∆𝑆 = 0,   D(2,0)(0, 𝑣)|∆𝑆 = 0,   D(1,1)(0, 𝑣)|∆𝑆 = 0,   D(0,2)(0, 𝑣)|∆𝑆 = 0 . 

With equation (3.5), our new interpolating surface at Polar extraordinary point �̅�(0, 𝑣)  
computed has the same 1st order and 2nd order derivatives as its underlying PCCSS at Polar 
extraordinary point 𝑆(0, 𝑣). Since PCCSS is G2 continuous at Polar extraordinary points, we can 

conclude that our new interpolating surface is also G2 continuous at Polar extraordinary 
points. QED 

 

Property 2: It interpolates control points in PCC mesh, and interpolates the normal and 
curvature of their corresponding limit points at PCCS limit surface. 

Proof: Since the 1st order and 2nd order derivatives of Bezier Crust vanishes at 4 corners, by 
analyzing equation (3.5), we can conclude that 1st order and 2nd order derivatives of PCCS limit 
surface on the corner control points of each face are the same as those of our new 
interpolating surface. QED 

 

Since PCC mesh is an extension to Polar mesh by including CCS extraordinary points. So we can 
apply our new interpolating scheme on Polar mesh as well. 

Corollary 1: On Polar mesh, our new interpolating surface is C2 continuous everywhere, except at 
Polar extraordinary points, where it is G2. 

Proof: A Polar mesh is a PCC mesh without CCS extraordinary points. PCCS can be applied to Polar 
mesh as well. On a Polar mesh, the PCCSS is C2 continuous everywhere, except at Polar extraordinary 
points, where it is G2. With Property 1 shown above, one can prove that our new interpolating surface 
on Polar mesh is C2 continuous everywhere, except at Polar extraordinary points, where it is G2. QED 
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Implementation results (Fig. 1, 8, 9, 12)  show that our new interpolating scheme can generate high 
quality Polar limit surface. Our new interpolating scheme on PCC mesh is heuristic, it can efficiently 
compute each limit point of interpolating surface without drastically adding computation time. 

 

Figure 11. Top shows two scenario of difference vectors; bottom shows an interpolating example, 
left is our new interpolating surface, middle is the CCS limit surface, right is Bezier Crust shown 

standalone.  

The shape of Bezier Crust shown standalone depends on difference vectors. Twisting effect may 
happen on Bezier Crust when difference vectors take opposite directions (bottom right of Fig. 11)[12]. 
But this twisting effect can be compensated by underlying subdivision surfaces. So generally, such 
twisting effect is not visible in the generated interpolating surfaces. More experiments and further 
research are needed for identifying the impact of twisting effects on our new interpolating surfaces. 
 

 
Figure 12. Three examples of interpolating on Polar mesh, (a) Polar mesh, (b) Polar limit surface with 
PCCSS, (c) mesh with limit surface together, approximating, (d) new interpolating limit surface with 

Bezier Crust on PCCSS    (e) mesh shown with interpolating surface. 
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5 CONCLUSION 

In this paper, we introduce a new heuristic interpolation scheme on Polar surfaces, especially on 
PCCSSs. We show that, by vertex splitting, we can treat a Polar face as a quad face, such that the bi-
quintic offsetting Bezier Crust can be applied to the Polar faces as well. The generated interpolating 
surface maintains the continuity of underlying PCCS limit surface, i.e. G2 on Polar extraordinary points, 
C1 on CCS extraordinary points, and C2 everywhere else.  

Implementation results show that our new scheme can generate high quality images appropriate 
for engineering and computer graphics usage. 

 While Polar surface is studied to solve high valence artifact inherent in CCS, no known work is 
developed for interpolation schemes on Polar surfaces.  With our subdivision independent 
interpolation scheme of Bezier Crust, we can efficiently generate a smooth interpolating surface on  a 
PCC/Polar mesh. 
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