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Abstract

Quadratic Bézier curves are important geometric entities in many applications. However, it was often ignored by the literature

the fact that a single segment of a quadratic Bézier curve may fail to fit arbitrary endpoint unit tangent vectors. The purpose of this

paper is to provide a solution to this problem, i.e., constructing G1 quadratic Bézier curves satisfying given endpoint (positions and

arbitrary unit tangent vectors) conditions. Examples are given to illustrate the new solution and to perform comparison between

the G1 quadratic Bézier cures and other curve schemes such as the composite geometric Hermite curves and the biarcs.
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I. INTRODUCTION

Quadratic Bézier curves are very important geometric entities in many applications [1], [2], [3], [7], [8], [12, et al]. For

example, quadratic Bézier curves are often used as the generatrix curves of the surface of radars, and to approximate circular

arcs [1, et al], which cannot be represented by polynomials in an exact way. The space and computation costs of quadratic

Bézier curves are both smaller than any other free form curves of degree three or higher. When approximating a given curve,

the number of segments of the resultant quadratic Bézier curve is usually much smaller than that required by a polyline.

In this paper, which is presented at the 11th IEEE International Conference on CAD/Graphics [4], quadratic Bézier curves

are constructed to satisfy the endpoint conditions, which include the two endpoint positions and two directions of the unit

tangent vectors at the end points. How to construct curves to satisfy the endpoint conditions is a fundamental problem in
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computer aided geometric design [10, et al] and numerical computation and analysis [5, et al]. Hermite curves [5], [10, et al],

biarcs [6], [9], [11, et al], and quadratic Bézier curves [1], [7, et al] are often the solutions. Among the above three kinds of

curves, Hermite curves [5, et al] appear the most frequently in the literature of numerical computation and analysis. However, as

pointed out by [10], they may have cusps (see Figure 1 from [10] as an example), which are not allowed in many applications.

COH (composite optimized geometric Hermite) curves [10] have many advantages over traditional Hermite curves. However,

Fig. 1. A Hermite curve with a cusp [10].

they require at least three segments to cover all the directions of the endpoint tangent vectors [10]. Biarcs [11] are usually

made of only two segments. They are frequently used in CNC (Computer Numerical Control) to generate G1 arc splines as

the tool paths. Since biarcs are usually composite of two circular arcs, they cannot be exactly represented in a polynomial

form. If some systems or applications prefer polynomials, they have to be converted into polynomial representation, such as

quadratic Bézier curves [1, et al].

Quadratic Bézier curves [1], [7, et al] can be used to satisfy the endpoint conditions as well. However, the fact that a single

segment of a quadratic Bézier curve cannot cover all the directions of the endpoint unit tangent vectors is ignored so far in

many literatures [1], [7, et al]. Thus, some applications may fail due to the quadratic Bézier curves not being able to fit in with

some requirements of the endpoint unit tangent vectors. Figure 2 gives such an example. In order to make the applications

Fig. 2. A single quadratic Bézier curve does not fit in with the directions of the given endpoint unit tangent vectors.

[1], [7, et al] available in a general way, it is definitely to find a solution for quadratic Bézier curves. Thus, in this paper, we

give such a solution. We also prove that two segments of quadratic Bézier curves are enough to cover all the directions of the

endpoint unit tangent vectors.

The remaining part of the paper is arranged as follows. The necessary and sufficient conditions for a single quadratic Bézier

curve satisfying the given endpoint constrains (of both positions and directions of unit tangent vectors) are provided in Section

2. Section 3 addresses how to construct two segments of G1 quadratic Bézier curves with the endpoint constrains of both

positions and arbitrary endpoint unit tangent vectors. Some examples and discussion are given in Section 4. Concluding remarks

are presented in the last section.
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II. NECESSARY AND SUFFICIENT CONDITIONS FOR A SINGLE QUADRATIC BéZIER CURVE

The definition of a quadratic Bézier curve is

C(t) =
2∑

i=0

PiBi,2(t), t ∈ [0, 1],

where P0, P1 and P2 are control points, and Bi,2(t) = 2
i!(2−i)! t

i(1 − t)2−i. As shown in Figure 3, a G1 quadratic Bézier

curve C(t) is required to satisfy the following endpoint conditions:




C(0) = P0 = Q0,

C(1) = P2 = Q1,

C′(0) has the same direction with V0, and

C′(1) has the same direction with V1,

where Q0 and Q1 are given points, and V0 and V1 are given unit tangent vectors at Q0 and Q1, respectively.

P0 (Q0)

P1

P2 (Q1)

C(t)
V0

V1

Fig. 3. A G1 quadratic Bézier curve.

To simplify the address, let Li be the line passing through Qi and having the direction Vi, where i = 0, 1. According to

the definition of a quadratic Bézier curve, we have that the endpoint tangent vectors of the Bézier curve C(t) are C′(0) =

2(P1 − P0) and C′(1) = 2(P2 − P1). Hence, we obtain that P1 should be the intersection point of L0 and L1. In the

meanwhile, we have that

(P1 −P0) ·V0 > 0 and (P2 −P1) ·V1 > 0.

Thus, we have the following theorem, which provides the necessary and sufficient conditions for a single G1 quadratic Bézier

curve.

Theorem 1 The necessary and sufficient conditions for a G1 quadratic Bézier curve are

(1) if L0 and L1 have one unique intersection point Q, then the following Boolean expression should be true

((Q−Q0) ·V0 > 0) and ((Q1 −Q) ·V1 > 0) ;

(2) if L0 and L1 are coincident, then the following Boolean expression should be false

(V0 ·V1 > 0) and ((Q1 −Q0) ·V1 < 0) .

If the conditions in Theorem 1 are not satisfied, a single quadratic Bézier curve cannot satisfy the given endpoint conditions.

An example is shown in Figure 2. Here addresses another example. If V0 has the same direction with V1, but not with the

direction of Q1 −Q0, then the above endpoint conditions cannot be satisfied for any single quadratic Bézier curve.
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III. TWO SEGMENTS OF QUADRATIC BéZIER CURVES

If a single G1 quadratic Bézier curve cannot satisfy the endpoint conditions, then we may turn to a Bézier curve with

some degree higher than two such as a cubic Hermite curve [10, et al], or we may have to require some more segments.

Our experience shows that two segments of quadratic Bézier curves are enough. The solution here is based on Section 2, and

all the symbols in Section 2 are inherited here. Q0 and Q1 are two given points, which are required to be the starting point

and the ending point, respectively. V0 and V1 are two given unit vectors. The tangent vector at the starting point of the first

quadratic Bézier curve C1(s) should have the same direction with V0, and the tangent vector at the ending point of the second

quadratic Bézier curve C2(t) should have the same direction with V1.

Our solution is as follows. It is illustrated in Figure 4 as well. Let P1,1 = Q0+rV0, P1,2 = Q1−rV1, and P2,1 = P1,1+P1,2
2 ,

P0,1 (Q0)

P1,1 P2,1 (P0,2) P1,2

P2,2 (Q1)
C1(s) C2(t)V0

V1

α

β

(a)

P0,1 (Q0)

P1,1

P2,1 (P0,2)

P1,2

P2,2 (Q1)
C1(s)

C2(t)

V0 V1

α β

(b)

Fig. 4. G1 quadratic Bézier curves (two segments): (a) “C”-shape, (b) “S”-shape.

where r is a positive real number (how to choose a value for r will be discussed later in the remaining part of this section).

The control points of the first quadratic Bézier curve C1(s) are P0,1 = Q0, P1,1 and P2,1. And the control points of the

second quadratic Bézier curve C2(t) are P0,2 = P2,1, P1,2 and P2,2 = Q1. According to Theorem 1, we have the following

theorem.

Theorem 2 For arbitrary r ∈ (0, ‖Q1−Q0‖
3 ), the composite curve made by C1(s) and C2(t) satisfies the above endpoint

conditions, and covers all the possible directions of V0 and V1.

It seems that any positive real number r is enough for Theorem 2. Here r < ‖Q1−Q0‖
3 is a safe requirement which avoids

some degenerate cases. Our experience shows that the choice r = 0.3‖Q1 −Q0‖ is enough to produce a pleasing shape for

the composite curve. In order to get a better shape, some more calculation may be necessary. In the remaining part of this

section, we will discuss how to obtain r such that all the edges of the control polygons of both C1(s) and C2(t) have the

same length, i.e., ‖P1,1 −P0,1‖, ‖P2,1 −P1,1‖, ‖P1,2 −P0,2‖ and ‖P2,2 −P1,2‖ are equal to each other.

According to our solution, we already have

‖P1,1 −P0,1‖ = ‖P2,2 −P1,2‖

and

‖P2,1 −P1,1‖ = ‖P1,2 −P0,2‖.

Thus, all we need here is

‖P2,1 −P1,1‖ = ‖P1,1 −P0,1‖. (1)
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Equation (1) is equivalent to

‖P1,2 −P1,1‖ = 2‖P1,1 −P0,1‖.

Thus, we have

(P1,2 −P1,1)
2 − 4r2 = 0, (2)

which is a quadratic equation with respect to r. Solve Equation (2), and we have the following conclusions.

As shown in Figure 4, let α be the angle from the direction of (Q1 −Q0) to V0, and β be the angle from the direction of

(Q1−Q0) to V1. Here, if the nonzero angle is measured in the counterclockwise, the value of the angle is positive; otherwise,

it has a negative value. Let

h1 =
√

2 + cos2 α + cos2 β − 2× sinα× sinβ

and

h2 = 2× cos(β − α)− 2.

If h2 6= 0, we have

r =
(cos α + cos β + h1)‖Q1 −Q0‖

h2

or

r =
(cos α + cos β − h1)‖Q1 −Q0‖

h2
.

If h2 = 0, then Equation (2) degenerates into a linear equation. In this case, we have

r =
‖Q1 −Q0‖

2(cos α + cos β)
.

In the above possible values of r, only the positive value can be used.

IV. EXAMPLES AND DISCUSSION

We have tested all the directions of V0 and V1, of which the values of the angles (i.e., α and β) are integers in degrees.

Figure 4 shows two examples. Figure 4(a) produces the curves in “C”-shape with α = π
4 and β = −3π

4 . Figure 4(b), produces

the curves in “S”-shape with α = π
4 and β = π

4 . The shape of a composite curve made by two quadratic Bézier curves depends

on α and β as well as the value of r. Our experience finds that the choice r = 0.3‖Q1−Q0‖ is enough to produce a pleasing

shape for our solution. The value of r, which makes all the edges of the control polygons of both C1(s) and C2(t) have the

same length, may be another good choice. Figure 5 gives an example, which illustrates how the values of r affect the shapes

of the composite curves. In this example, α = 0 and β = π
3 . From Figure 5(a) to Figure 5(d), the values of r are 0.1, 0.3, 0.75

and 0.3028, respectively. As shown in Figure 5(a), when r is small, for example r = 0.1, the composite curve is close to the

line segment from Q0 to Q1. As shown in Figure 5(d), when r is large, the composite curve may have some sharp shape, and

it may be easy to become self-intersected. When r = 0.3028 as shown in Figure 5(d), all the edges of the control polygons of

both the quadratic Bézier curves have the same length. Here, 0.3 is very close to 0.3028, so the shape of the composite curve

in Figure 5(b) is similar to the shape of the composite curve in Figure 5(d).

Another example is given in Figure 6. In this example, α = β = π
3 . Three kinds of curves are compared here. In Figures

6(a) and 6(b), G1 quadratic Bézier curves are applied. All the edges of the control polygons of both the quadratic Bézier

curves have the same length when r = 0.5, as shown in Figure 6(b). Figures 6(c) and 6(d) illustrate the COH (composite

in
ria

-0
05

17
26

0,
 v

er
si

on
 1

 - 
14

 S
ep

 2
01

0



Q0

Q1V0

V1

β

(a)

Q0

Q1V0

V1

β

(b)

Q0 Q1

V0 V1 β

(c)

Q0

Q1V0

V1

β

(d)

Fig. 5. A comparison among the composite curves with different values of r: (a) r = 0.1, (b) r = 0.3, (c) r = 0.75, (d) r = 0.3028.

optimized geometric Hermite) curve [10] and the biarc [11], respectively. As shown in the figures, the quadratic Bézier curve

with r = 0.3 seems more similar to the COH curve and the biarc, and the quadratic Bézier curve with r = 0.5 seems to have

the nicest shape among all the curves in Figure 6. In this example, the COH curve has three segments, which requires larger

space of computer storage than the two quadratic Bézier curves. The degree of a COH curve is three, which is higher than a

quadratic Bézier curve. Thus, to obtain a point on curves, the COH curve requires more time cost than the quadratic Bézier

curve. In the meanwhile, the biarc cannot be represented in a polynomial form.

Q0 Q1

V0 V1

α β

(a)

Q0 Q1

V0 V1

α β

(b)

Q0 Q1

V0 V1

α β

(c)

Q0 Q1

V0 V1

α β

(d)

Fig. 6. A comparison among the different kinds of curves: (a) two segments of quadratic Bézier curves with r = 0.3, (b) two segments of quadratic Bézier

curves with r = 0.5, (c) a COH (composite optimized geometric Hermite) curve (3 segments) [10], (d) a biarc [11].

V. CONCLUSIONS

A solution for constructing G1 quadratic Bézier curves is presented in this paper. We build a composite curve made by two

quadratic Bézier curves to satisfy the endpoint constraints with both positions and directions of unit tangent vectors. The new

solution can cover all the directions of the endpoint tangent vectors. The composite curve has the flexibility to obtain different

shape with different values of r. The default value of r and the value of r, which makes all the edges of the control polygons

of both the quadratic Bézier curves have the same length, are provided as well. The new solution has some advantages over

COH (composite optimized geometric Hermite) curves and biarcs. All those three kinds of curves are able to produce pleasing

shape, and have their own favorite applications. The solution proposed in this paper makes quadratic Bézier curves have some

more flexibility in some possible applications such as those in [1], [7].
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