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determined by minimizing the following energy function E:
E= Z(k,(z;m 1) Rl (05— ei)2), (13)
i=1

where m is the number of polygon legs which is equal to the number of joints, and k; and &, are constants called
spring coefficients. l; is the length of the i-th leg and 6; is the joint angle between the (i — 1)-st and i-th legs.
lfpt and prt are the optimal lengths and joint angles of the corresponding legs. In the optimal case the start
and the end points of the fine-tuned curve coincide. Therefore we assume lfpt and prt are the lengths and joint
angles of the fine-tuned curve without the end-point constraint. Because of the invariance property of the endpoint
tangent directions, the joint angle between the first and the last legs can be obtained simply by calculating the
angle between them. The position of at least one point and rotation about at least one point of the curve should
be fixed to avoid rigid motion during the optimization.

The conjugate gradient method (see, for instance, [13]) is used for the minimization process. The initial values
of the minimization process are the control points of the invariant curve fine tuned by an identity scalar function
whose degree is 1 and whose segmentation equals that of the given scalar function. To achieve geometrically similar
effects under uniform scaling, the original curve is pre-scaled to fit in a unit square. After the fine tuning process,
the curve will be rescaled to the original size. The final shape also depends on the ratio of the spring coefficients
k; and k,. Large k4 relative to k; implies a stronger resistance to change the joint angles and, therefore, a bigger
tendency for the fine-tuned curve to preserve the local maxima of the curvature. The ratio used in the examples in
Figures 14(c) and 14(e) is k; : k4 = 1 : 2. The white marks on the curves in these figures indicate the fixed points.
The processing time for the deformation is less than 0.1 second. The deformation performed by elongating the
bottom leg of the original curve is shown in Figure 14(f) as a comparison to our method. Because of the limited
degree of freedom of the curve, it has a small curvature around the top.

4.3 Subdivision surface

The three issues (domain, product and closedness) that have to be addressed when dealing with closed subdi-
vision curves and surfaces are more complicated in the surface case. Fortunately, they can still be resolved using
the same strategy as the curve case.

The key idea in applying the fine tuning technique to subdivision surfaces is that segmentation of the parameter
space of the scalar function o must have the same knot intervals as the original subdivision surface, so that one only
need to assign control values to the edges or vertices of the control mesh.* This requirement puts some restriction
on the choice of the scalar function, but would still leave one with enough room to yield various deformations, as
will be seen in this section. It should be pointed out that, by assigning control values to the edges of a subdivided
control mesh instead of the original control mesh, one can overcome this restriction to have a finer segmentation
for the scalar function.

The Doo-Sabin and Catmull-Clark surfaces are two popular subdivision surfaces used in graphics community.
They are constructed by generalizing the idea of obtaining uniform biquadratic and uniform bicubic B-spline patches
from a rectangular mesh, respectively. When using a Doo-Sabin surface as the original surface and applying a linear
scalar function to 1t for the fine tuning process, the ideal situation would be for the fine-tuned surface to become
a Catmull-Clark surface. This is a desirable combination of the degrees of the original surface and the fine-tuned
surfaces as far as continuity is concerned, as mentioned in Section 2. As the degree elevation process requires the
use of multiple knots, the uniform Catmull-Clark formulation can not represent a Doo-Sabin surface even if it is
defined by a regular control mesh. Fortunately, non-uniform versions of these surfaces have been presented by
Sederberg et al. [16] and a Doo-Sabin surface can be converted to a non-uniform Catmull-Clark surface precisely
for a regular control mesh and approximately for a control mesh with arbitrary topology, as explained in Appendix

(b).

Figure 16(b) shows a typical Doo-Sabin surface defined by the control mesh shown in 16(a). The control mesh
is converted to the control mesh of a non-uniform Catmull-Clark surface in 16(c) where 1 is assigned as the knot
interval to each edge in yellow color and 0 to each edge in red.

4Whether the control values are assigned to the edges or vertices depends on the degree of the scalar function. If the scalar function
is linear or cubic, the control values are assigned to the edges. If the scalar function is quadratic, the control values are assigned to
the vertices. This is because each segment of the scalar function corresponds to an edge or vertex of the control mesh.
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4.4 Closed surface

A physical model similar to the curve case is used to keep the fine-tuned surface closed. As a preliminary process,
each edge of the control mesh is assigned a control value a; as a specified value of the scalar function «. Each
edge is again assumed to be made of a flexible spring and two adjacent edges connected to the same vertex are
jointed with a rotational spring. An energy function £ similar to Eq.(13) is defined and minimized to determine
the positions of the control points of the fine-tuned surface:

E=k Y (17 = 1) 4k D (007 =08 + ky (077" — 01)?, (14)
=1 =1 =1

where mg is the number of edges of the control mesh, m; is the number of constrained pairs of edges connected
to the same vertices, as will be explained later in this subsection, and ms is the number of total pairs of adjacent
edges connected to the same vertices, i.e. the total number of the valences (degrees) of all the vertices of the
control mesh. lfpt and Hf’om are defined as in Section 4.2. The first and second summations are responsible for
the fine tuning process and the last term is for preserving original shape. The calculation of the first term is
straightforward if the optimal lengths lfpt of the edges are available. The second term 1is calculated as follows.
Consider, for example, the boundary edges of the face Py P P35 P53 of the Doo-Sabin control mesh in Figure 15(a).
These edges are transformed to an edge loop Q,Q; - - - Q in the converted Catmull-Clark control mesh. By using
the assigned control values of the edges (value a is assigned to edge PyP; in both (a) and (b)) we can determined
optimal lengths lfpt of the edges and optimal angles Hf’om of the edge joints in the loop. Hence we can obtain
the optimal length of, for instance, edge Q,Q and the optimal joint angle between edges Q,Q, and Q,Q;. The
situation could be more complicated and it is possible that the boundary edges of several faces correspond to
the same edge loop. For example, in Figure 15(b), the boundaries of the two faces Py P1P2Ps and P2 P3P4Ps
correspond to the same edge loop Q@ - -- Q4. Identifying the loops which are the targets of the fine tuning is
not difficult because the degree of each vertex of the converted control mesh is equal to 4 and a loop is identified
by tracing the opposite edge each time we enter a new vertex. It is easy to see that each edge of the converted
polygon belongs to one and only one loop. For the shape preservation term, Hf’om is calculated from the converted
control mesh.

Figure 16(f) shows an example of a fine-tuned Doo-Sabin subdivision surface. Initially, each edge of the control
mesh is assigned a value 1 as the default control value. Some of the edges are then given different values to deform
the surface. To prevent rigid motion and to reduce the number of parameters in the optimization process, one may
have some of the vertices fixed. For this example, 1.3 is assigned to each of the three edges connected to the top
vertex as the control value and three vertices at the bottom are fixed. The conjugate gradient method is used for
the minimization process as in the curve case. The original surface is pre-scaled to fit in a unit cube and the ratio
ki ks :lpy =1:1:1i1s used. The processing time for the deformation is less than a second. The yellow edges
in 16(b) and 16(c) are given the value of 1 as their knot intervals. The red edges are given 0.05 instead of the
theoretical value of 0 to clarify the effect of small knot interval value which generates dense meshes around. The
example shows that one can deform a subdivision surface without even manipulating its control mesh.

(b) Edge Loop around two
faces.

(a) Edge loop around one face.

Figure 15. Extraction of edge loop.



(a) Original control mesh. (b) Converted control mesh. (c) Deformed control mesh.

(d) Doo-Sabin surface (¢) Non-uniform Catmull- (f) Deformed non-uniform
(depth=3). Clark surface (depth=3). Catmull-Clark surface
(depth=3).

(1) Deformed control mesh of
non-uniform Catmull-Clark
surface. The belly and all

the wings are deformed.

(g) Original control mesh. (h) Converted mesh.

() Doo-Sabin surface (k) Non-uniform Catmull- (1) Deformed non-uniform
(depth=3). Clark surface (depth=3). Catmull-Clark surface
(depth=3).

Figure 16. Examples of subdivision surface fine tuning.
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