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Abstract Presented in this paper is an approach to construct a C2-continuous surface for a mesh of arbitrary
topology. The construction process is subdivision surface based, with modification performed on extra-ordinary
patches to ensure C2-continuity of the resulting surface. Implementation is easy because modification is patch-
based. The resulting surface has an explicit expression of the form WMG for each extra-ordinary patch where
W is a parameter vector, M is a constant matrix and G is the patch-wise control point vector. Therefore,
computing derivatives, normals and curvatures for points in the domain of the given mesh is very easy and,
consequently, the resulting surface is suitable for operations such as shape analysis, shape optimization, surface
energy minimization, etc. The construction process includes constraints so that the shape of the resulting C2

surface is very similar to the surface generated by subdivision. More importantly, the resulting C2 surface satisfies
the convex hull property. The approach presented in this paper is based on Catmull-Clark subdivision, however
we believe the technique can be adopted for other subdivision schemes as well.

1 Introduction

It has been a long desire and a long effort of the computer graphics and geometric design community to have a
nice approach to construct smooth surfaces from meshes of arbitrary topology. A nice approach should satisfy
the following requirements:

• simple: no linear or non-linear system needs to be solved,

• local: changes to a control mesh only affect the resulting surface locally,

• smooth: the resulting surface is C2 everywhere, including at any extra-ordinary points,

• convex: the resulting surface satisfies the convex hull property,

• explicit: the resulting surface has an explicit expression of the form WMG for each patch, where W is a
parameter vector, M is a constant matrix and G is the control point vector, so that surface evaluation, and
computation of the first and second derivatives, normal and curvature at any point can be easily done from
the simple representation.

When the degree (valence) of each vertex of the given mesh is 4, the algorithm for generating tensor product
B-spline surfaces is such a nice approach. However, for meshes not in this category, as far as we know, there is
no such an approach reported in the literature yet, although there are approaches that satisfy almost all of the
above requirements [18, 20, 22, 23, 6, 7, 8]. In this paper we propose a new smooth surface construction technique
that satisfies all the above requirements. The concept of the new approach is similar to the one presented in
Levin’s paper [6], that is, each extra-ordinary patch in a subdivision surface is replaced with a C2 surface patch
generated by blending two C2 surface patches together. Both the new approach and Levin’s approach generate a
C2 surface that is similar to the surface generated by Catmull-Clark subdivision. The main difference is that the
new approach does not need to solve any equation in the construction process, while Levin’s approach needs to
solve a linear least square equation for each extra-ordinary patch. Second, our C2 surface is constructed patch by
patch, it does not require a global parametrization around an extra-ordinary point. Therefore the new approach
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is local and easy to implement. Third, the resulting surfaces produced by Levin’s approach may not satisfy the
convex hull property, which is a must-have property in many graphics and geometric design applications. The new
approach guarantees the resulting surface is bounded by its convex hull. Finally, the new approach can represent
a resulting surface with a simple matrix form WMG, where W is a parameter vector, M is a constant matrix
and G is the control point vector. With such an explicit matrix representation, one can easily find the location,
partial derivatives, normal vector, and curvature for any point in the domain of the given mesh, including an
extra-ordinary point.

2 Previous Work

The topic of smooth surface construction has been studied extensively [11, 12, 13, 15, 24, 7, 8, 9]. Many smooth
surface construction methods have been proposed for meshes of arbitrary topology. Basically these methods can
be divided into two categories: piecewise polynomial schemes [1, 2, 19] and non-polynomial schemes [22, 6]. The
most famous type among the piecewise polynomial schemes is the subdivision schemes [4, 10, 19]. In the last
decade, subdivision surfaces have become popular in graphics, geometric modeling and computer animation [3]
because of their relatively high visual quality, numerical stability, simplicity in coding and, most importantly,
their capability in modeling any complex shape with only one surface [21]. They are widely used for representing
models of irregular topology. However, most of the general subdivision schemes suffer from irregularities at the
extra-ordinary points. For example, although Catmull-Clark surfaces are C2-continuous almost everywhere, they
are only C1-continuous at the extra-ordinary points.

Some techniques have been reported to improve the smoothness of a subdivision surface at extra-ordinary
points. In [18], an algorithm is designed to generate C2 surface everywhere. But the curvature at an extra-
ordinary point is forced to be zero, resulting in a flat-spot. TURBS presented in [20] constructs Ck continuous
surfaces and in [22], C∞ surfaces can be constructed by blending polynomial patches with exponentials. Box spline
is adapted to form C2 surfaces on an infinite mesh with a single extra-ordinary point [23]. To directly improve
the limit surface, Levin [6] perturbed Catmull-Clark surfaces using polynomial blending functions between local
polynomial patches; Zorin [7] similarly perturbed Loop subdivision surfaces to be C2 using a blending function
that is itself a subdivision surface.

There are also other algorithms reported to improve smoothness by directly converting meshes to splines.
For example, free-form splines [18, 16] are used to build Ck surfaces. In [13, 25] curvature continuous surfaces
are built from quad meshes using bi-degree 7 patches, setting extra parameters by minimizing deviation from
bi-degree 3 patches. In [14, 26] guided subdivision is introduced, which is capable of constructing Ck surfaces.

In general, non-polynomial schemes can yield C2 or even smoother surfaces. For example, the approach
presented in [6] can generate everywhere C2 smooth surface, but it does not satisfy the convex hull property.
Recently, a polar subdivision technique [8, 9] has been proposed. This new subdivision technique can generate
smooth surfaces that are curvature continuous with good curvature distribution near extra-ordinary points. But
this technique may only be applied to meshes with polar configurations.

2.1 Previous Works on Extraordinary Points

Many researches have been performed to improve the smoothness of a CCSS at extraordinary points.
Prautzsch [17] modifies the subdivision scheme near extraordinary points to generate a C2 everywhere surface

with zero curvature at extraordinary points.
Zorin [7] and Levin [6] present schemes to yield a C2 continuous surface by blending the limit surface with a

low degree polynomial defined over the characteristic map in the vicinity of each extraordinary point.
Loop and Schaefer [25] present a second order smooth filling of an n-valence Catmull-Clark spline ring with n

biseptic patches, with shape optimization for free parameters.
Peters and Karčiauskas [29] introduce a guided subdivision scheme that uses a Bezier surface as a guide for

each subdivision step, and a C2 accelerated Bi-3 guided subdivision that uses 2m subfaces in the m-th level for
surface patches surrounding extraordinary points. In the second case, they show that although this scheme is not
practical for Catmull-Clark sufaces, it can be applied to a polar configuration.
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However, these solutions are not completely satisfactory yet. Blending the limit surface with a precomputed
curvature continuous surface patch is not flexible in surface representation. Filling the holes with bidegree-6
patches will result in higher gaussian curvature near the extraordinary points and make the limit surface unattac-
tive. The bi-cubic subdivsion scheme that generates 2m subpatches in the m-th subdivision is also undesired.

3 Basic Idea

The basic idea of our approach is that for every patch Pi around an extra-ordinary vertex V of degree n, 1 ≤ i ≤ n,
we construct two C2-continuous patches Si and Ti (See Figure 1) in a way such that

• Si is C
2-continuously connected with Si−1 and Si+1, except at V∞, where it is C0,

• Si is connected to Pi at Ci with C2-continuity, where Ci is the intersection curve of Si, Ti and Pi,

• Ti is C
2-continuously connected with Ti−1 and Ti+1,

• all Ti’s are C2-continuously connected at the extra-ordinary point V∞,

• Ti is connected to Pi at Ci with C0-continuity.

Note that if Si and Ti are constructed this way, then a surface obtained by linearly blending Si and Ti together
is C2-continuous everywhere. The key is how to construct Si and Ti, for 1 ≤ i ≤ n.

(a) Requirements for Si (b) Requirements for Ti

Figure 1: Basic idea.

4 Construction of Si

For a given mesh, we assume that all the faces are quadrilaterals and all the extra-ordinary vertices are separated
by at least two faces. If it is not the case, simply perform (at most) two Catmull-Clark subdivisions to reach
such a status. We consider all the patches Pi around an extra-ordinary vertex V of valance n, 1 ≤ i ≤ n. It
is well known that Pi depends on its surrounding 2n + 8 vertices only [5]. See figure 2(a) for notation of these
vertices. One can split Pi into four pieces (See Figure 2(b)) by performing one subdivision on Pi. Three of these
four pieces can be represented explicitly as follows.

Let G1 = [V,E1, · · · , En, F1, · · · , Fn, I1, · · · , I7]T . Vertices for Gi can be identified similarly from the notation
given in Figure 2(a). Let

W (u, v) = [1, u, v, u2, uv, v2, u3, u2v, uv2, v3,
u3v, u2v2, uv3, u3v2, u2v3, u3v3].

(1)

Then Pi can be defined as follows.

Pi(u, v) =















something we do not need, [0, 1

2
]× [0, 1

2
]

W (2u− 1, 2v)M4K1AGi, [ 1
2
, 1]× [0, 1

2
]

W (2u− 1, 2v − 1)M4K2AGi, [ 1
2
, 1]× [ 1

2
, 1]

W (2u, 2v − 1)M4K3AGi, [0, 1

2
]× [ 1

2
, 1]

(2)
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(a) Extraordinary point V

and its neighboring vertices.
(b) layout of vertices around
V after one subdivision.

Figure 2: Notation of vertices around an extra-ordinary vertex.

where M4 is the B-spline tensor matrix of size 16× 16, K1,K2,K3 are constant picking matrices of size 16× 24,
each of which picks 16 proper vertices from the mesh if one subdivision is performed on patch Pi (See Figure
2(b)). Matrix A is the extended Catmull-Clark subdivision matrix [5] which is of size 24× (2n+ 8).

Now define Ci(t) = Pi(cos t, sin t), t ∈ [0, π/2]. Let Li(r, t) = Pi(r cos t, r sin t). Then Lr
i (1, t) =

∂Li(r,t)
∂r |r=1, L

rr
i (1, t) =

∂2Li(r,t)
∂r2 |r=1 are the first and second derivatives of Pi at Ci(t) with respect to r, respectively.
Denote the limit point of V by V∞. It is well known [5] that V∞ = 1

n(n+5) (n
2V + 4

∑
Ei +

∑
Fi). Let

R = [1, r, r2, r3], then we can construct a Bézier curve as follows such that it has the same first and second
derivatives at Ci(t) as those of Pi at Ci(t).

Si(r, t) = RMb[V∞, Li(1, t)− 2
3L

r
i (1, t) +

1
6L

rr
i (1, t),

Li(1, t)− 1
3L

r
i (1, t), Li(1, t)]

T ,
(3)

where 0 ≤ r ≤ 1, 0 ≤ t ≤ π/2 and Mb is the Bézier matrix.
From Eq. (2) and the definition of Li(r, t), we know that Lr

i (1, t) = cos tPu
i (cos t, sin t) + sin tP v

i (cos t, sin t)
and Lrr

i (1, t) = cos2 tPuu
i (cos t, sin t) + sin 2tPuv

i (cos t, sin t) + sin2 tP vv
i (cos t, sin t), where Pu

i , P
v
i , P

uu
i , Puv

i and
P vv
i are the first and second partial derivatives of Pi (See Eq.(2)). We can see that Si is a linear combination

of Gi with parameters t, cos t and sin t. Hence Si can be represented in matrix form. Based on Eq. (1), we

define Wt = W (cos t, sin t) and W̃(r, t) = [Wt, rWt, r
2Wt, r

3Wt]. If we plug Li, L
r
i and Lrr

i into Eq. (3) and fully
expand the formula, we get a matrix form representation for Si as follows.

Si(r, t) = W̃(r, t)M̃nGi, 0 ≤ r ≤ 1, 0 ≤ t ≤ π/2, (4)

where M̃n is a constant matrix of size 64× (2n+ 8) and M̃n can be pre-calculated for each n.

5 Proof of C2 between Si’s and Pi’s

Si(r, t), when t is fixed, is a Bézier curve of degree three with Si(1, t) = Li(1, t),
∂Si(r,t)

∂r |r=1 = Lr
i (1, t) and,

∂2Si(r,t)
∂r2 |r=1 = Lrr

i (1, t). When t varies, Si(r, t) is a surface and we can similarly find Lt
i(1, t), L

tt
i (1, t), L

rt
i (1, t).

For example, Lt
i(1, t) = − sin tPu

i (cos t, sin t) + cos tP v
i (cos t, sin t). These are the directional partial derivatives

of Si(r, t) at Ci(t) in r and t directions. And by design, they are also the directional partial derivatives of Pi at
Ci(t) in r and t directions. Hence Si and Pi have the same position, same first and second partial derivatives at
the curve Ci(t) in r, t and rt directions. According to the second fundamental form of differential geometry, we
obtain that Si and Pi have the same first and second partial derivatives at any point of Ci(t) in any direction.
Hence Si(r, t) is connected with Pi at curve Ci(t) with C2 smoothness.

To prove that when r 6= 0, Si and Si−1 are connected with C2, from the definition of Si(r, t), we just need to
show that in t direction, Li(1, t), L

r
i (1, t) and Lrr

i (1, t) are C2 continuous with Li−1(1, t), L
r
i−1(1, t) and Lrr

i−1(1, t),
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respectively. From the definition of Li(r, t), we know that when r and t vary, Li(r, t) becomes Pi. Because Pi is
C2 everywhere except (0, 0), by finding the corresponding derivatives, one can verify that, Li(1, 0) = Li−1(1, π/2),
Lt
i(1, 0) = Lt

i−1(1, π/2), L
tt
i (1, 0) = Ltt

i−1(1, π/2), L
r
i (1, 0) = Lr

i−1(1, π/2), L
rt
i (1, 0) = Lrt

i−1(1, π/2), L
rtt
i (1, 0) =

Lrtt
i−1(1, π/2), Lrr

i (1, 0) = Lrr
i−1(1, π/2), L

rrt
i (1, 0) = Lrrt

i−1(1, π/2), and Lrrtt
i (1, 0) = Lrrtt

i−1 (1, π/2). Hence The
C2-continuity between Li(1, t) and Li−1(1, t), Lr

i (1, t) and Lr
i−1(1, t), and, Lrr

i (1, t) and Lrr
i−1(1, t) is proven,

respectively.
Similarly, we can prove that Si and Si+1 are connected with C2 smoothness when r 6= 0. As a result, if we

define C(t) to be the union of all Ci(t)’s, 1 ≤ i ≤ n, then C(t) is C2 everywhere. When r = 0, i.e., at the
extra-ordinary point, Si is at least C

0 continuous because all Si’s pass through the common point V∞.

6 Derivatives at Pi(0, 0)

The properties of a subdivision surface at an extra-ordinary point have been studied extensively [2, 5, 4, 10]. It
is well known that Pi has unbounded first and second derivatives in either u or v direction at (0, 0). But the
directions of these partial derivatives can be calculated. For a given surface patch Pi, denote Du

i , D
v
i Duu

i , Duv
i ,

Dvv
i the vectors that have the same directions as ∂Pi(0,0)

∂u , ∂Pi(0,0)
∂v , ∂2Pi(0,0)

∂u2 , ∂2Pi(0,0)
∂u∂v , ∂2Pi(0,0)

∂v2 , respectively. For
a patch with an extra-ordinary vertex of valance n, n 6= 4, based on the results of the paper [5], the directional
vector of each partial derivative can be obtained by dividing the corresponding partial derivative by (2λ2)

∞,
where λ2 is the second biggest eigen value of the Catmull Clark subdivision matrix [5]. As a result we have




Du
i

Dv
i

Duu
i

Duv
i

Dvv
i



=

4

nδ




Λ1Γ0Ω, Λ2Γ1Ω
Λ1Γ2Ω, Λ2Γ3Ω
4Λ1Γ4Ω, 4Λ2Γ5Ω
2Λ1Γ6Ω, 2Λ2Γ7Ω
4Λ1Γ8Ω, 4Λ2Γ9Ω







E1

...
En

F1

...Fn




(5)

where Λ1 = [1, λ, λ2, λ3, λ4, λ5] and Λ2 = 4σ−1
c1+1Λ1 with λ = 1/16(c1 + 5 +

√
(c1 + 1)(c1 + 9)), σ = 1/16(c1 + 5−√

(c1 + 1)(c1 + 9)), δ = (64λ− 1)(32λ− 1)(16λ− 1)(λ− σ), Γi, 0 ≤ i ≤ 9, are all constant matrices of size 6× 5
and

Ω =




c2, c3, c4, c5, · · · , cn, c1
c1, c2, c3, c4, · · · , cn−1, cn
cn, c1, c2, c3, · · · , cn−2, cn−1

cn−1, cn, c1, c2, · · · , cn−3, cn−2

cn−2, cn−1, cn, c1, · · · , cn−4, cn−3



,

where cω = cos(2πω/n). Matrix Γ2, Γ3, Γ8, Γ9, Γ6 can be obtained by switching column k, 1 ≤ k ≤ n/2, with
column n− k + 1 in the matrix Γ0, Γ1, Γ4, Γ5, Γ7, respectively (please see supplemental matrials).

To simplify the notation, we define D′

i = (Du
i +Dv

i−1)/2 andD′′

i = (Duu
i +Dvv

i−1)/2. With these two definitions,
hereafter, when there is no possibility to get into confusion, we just say D′

i (or D
′′

i ) is the first (or second) partial
derivative along the edge V → Ei. Due to the fact that cω = cn−ω and cω = −cω−n/2, using Eq. (5), one
can easily verify that when n is even, D′

i = −D′

i−n/2 and D′′

i = −D′′

i−n/2. This means when n is even, all the

first/second partial derivatives are symmetric with respect to the point V∞.

7 Construction of Ti

Recall that the requirements for the construction of Ti are that Ti itself has to be C2 everywhere, C2 with its
neighboring patches Ti−1 and Ti+1 including at (0, 0), and at least C0 with Ci(t). There are many ways to
construct Ti. One simple way is to construct it as a Bezier patch, using an approach similar to the one given in
the above section. For example, if we use two coplanar circles for all the Bi(t)’s and Hi(t)’s in Figure 3(a) and
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(a) Construction of Ti. (b) Construction of Bi when n is
odd.

Figure 3: Using Bézier curve to construct Ti.

let R = [1, r, r2, r3], then the Bezier curve

Ti(r, t) = RMb[V∞, Bi, Hi, Ci]
T , 0 ≤ r ≤ 1,

becomes a surface when t varies, and this surface satisfies all the above requirements if the radius of Hi is two
times the radius of Bi. Note that two Bézier curves constructed from [V∞, B,H,C] and [V∞, B̂, Ĥ, Ĉ] are C2

smoothly connected at V∞ if and only if (1) B, V∞, and B̂ are collinear, (2) V∞ is the midpoint of B and B̂ and,
(3) Ĥ = H + 4(V∞ − B). The above defined Ti(r, t) satisfies all the conditions because the two coplanar circles
are smooth and symmetric with respect to V∞. However, the resulting surface from this Ti(r, t) may not be the
one the designer wants. So we need more constraints on Bi(t) and Hi(t). In the following, we will construct a Ti

that is similar to the original subdivision surface Pi at the extra-ordinary point by requiring that Ti and Pi have
the same location, same first and second derivatives at V∞.

The basic idea is again to construct Bézier curves that pass through V∞ and have the same partial derivatives
at V∞ as Pi. This is done through four steps (see Figure 3(a)). First, we construct a B-spline curve Bi(t)
around the extra-ordinary point using the first partial derivative vectors along each edge of the extra-ordinary
point. Second, we construct another B-spline curveHi(t) around the extra-ordinary point using the second partial
derivative vectors along each edge of the extra-ordinary point. Third, find four control points for a Bézier curve
such that it passes through V∞ and Ci(t), and such that its first derivative at V∞ is Bi(t) and the second derivative
at V∞ is Hi(t). Finally, using the four points, we can construct a Bézier curve which becomes a smooth surface
when t varies. Because Bi(t), Hi(t) and Ci(t) are C2 continuous, the constructed Bézier surface is C2 smooth
everywhere except at the extra-ordinary point. We can make it C2 at the extra-ordinary point by adding one
more condition such that Bi(t) and Hi(t) are symmetric with respect to the point V∞. The construction process
of Ti is shown below.

First Bi(t) and Hi(t) can be explicitly constructed as follows. When n is even, we use the partial derivatives
to define Bi and Hi directly:

Bi(t) = V∞ + ~g(t)Msαn[D
′

i−1, D
′

i, D
′

i+1, D
′

i+2]
T ,

and
Hi(t) = V∞ + ~g(t)Msβn[D

′′

i−1, D
′′

i , D
′′

i+1, D
′′

i+2]
T .

where ~g(t) = [1, t, t2, t3], 0 ≤ t ≤ 1, αn and βn are two constant coefficients, Ms is the B-spline matrix, 1 ≤ i ≤ n.
When n is odd, we add one more control point between each pair of consecutive derivatives, say the ith and
(i+ 1)th derivatives, by reversing the (i+ (n+ 1)/2)th derivatives (See Figure 3(b)). Each of Bi and Hi is then
defined as a set of two piecewise B-spline curves, as follows. When n is odd and 0 ≤ t ≤ 1

2 ,

Bi(t) = V∞ + ~g(2t)Msαn[−D′

i+n−1

2

, D′

i,−D′

i+n+1

2

, D′

i+1]
T ,

Hi(t) = V∞ + ~g(2t)Msβn[−D′′

i+n−1

2

, D′′

i ,−D′′

i+n+1

2

, D′′

i+1]
T .
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When n is odd and 1
2 ≤ t ≤ 1,

Bi(t) = V∞ + ~g(2t− 1)Msαn[D
′

i,−D
′

i+
n+1

2

, D
′

i+1,−D
′

i+
n+3

2

]T ,

Hi(t) = V∞ + ~g(2t− 1)Msβn[D
′′

i ,−D
′′

i+
n+1

2

, D
′′

i+1,−D
′′

i+
n+3

2

]T ,

where ~g(t), αn, βn and Ms are defined the same as the even case. In both cases, αn (or βn) is chosen in a way
such that when V∞ +αnD

′

k (or V∞ + βnD
′′

k), 1 ≤ k ≤ n, is represented by a linear combination of the vertices of
Gi, the coefficients of the representation are non-negative. To satisfy this requirement, from Eq. (5), we can find

that the proper ranges are 0 ≤ αn ≤ α̂n and 0 ≤ βn ≤ β̂n, where

β̂n = f/(8Λ1(Γ5[c2, c1, cn, cn−1, cn−2]
T+

Γ9[c3, c2, c1, cn, cn−1]
T )),

when n is even,
α̂n = f/(2Λ1(Γ1[c2+n

2
, c1+n

2
, cn

2
, cn

2
−1, cn

2
−2]

T+
Γ3[c3+n

2
, c2+n

2
, c1+n

2
, cn

2
, cn

2
−1]

T )),

and when n is odd,
α̂n = f/(2Λ1(Γ1[c2+n−1

2

, c1+n−1

2

, cn−1

2

, cn−1

2
−1, cn−1

2
−2]

T

+Γ3[c2+n+1

2

, c1+n+1

2

, cn+1

2

, cn+1

2
−1, cn+1

2
−2]

T )),

where f = δ(c+1)
(4σ−1)(n+5) . All the symbols in the above equations have the same values as those in Eq. (5). For

each n, α̂n and β̂n are constants and can be pre-calculated. αn and βn can be used to adjust the final surface
appearance around an extra-ordinary point as well. In our testing, we choose αn = (1/2)α̂n and βn = β̂n.

Now we can define Ti using basic Bézier curves as follows.

Ti(r, t) = RMb[V∞, 2
3V∞ + 1

3Bi(
2t
π ),

1
6V∞ + 2

3Bi(
2t
π ) +

1
6Hi(

2t
π ), Ci(

2t
π )]

T ,
(6)

where 0 ≤ r ≤ 1, 0 ≤ t ≤ π/2.
From Eq. (5) we know that all D′

i and D′′

i can be represented by a linear combination of Gi. Hence Bi and
Hi can be represented by a linear combination of Gi as well. We already know Ci and V∞ can be represented by
a linear combination of Gi in Section 4. Hence if fully expanded, Ti(r, t) can be represented with the following
matrix form.

Ti(r, t) = W̃(r, t)M̂nGi, 0 ≤ r ≤ 1, 0 ≤ t ≤ π/2, (7)

where W̃ is defined in Section 4 and M̂n is a constant matrix of size 64× (2n+ 8). M̂n can be pre-computed for
each n.

8 Proof of C2 among all Ti’s

Define B(t) to be the curve consisting of all the Bi’s, and H(t) to be the curve consisting of all the Hi’s, 1 ≤ i ≤ n.
It is obvious that B(t) and H(t) are C2 everywhere because they are piecewise B-spline curves. In addition, as
proven in section 4, C(t) is also C2 everywhere. Define T (r, t) to be the union of all Ti’s, 1 ≤ i ≤ n. Because Ti,
as defined in Eq. (6), only depends on Bi(t), Hi(t) and Ci(t), T (r, t) is only depending on B(t), H(t) and C(t),
which are all C2 continuous curves. Therefore, T (r, t) is C2 continuous everywhere, except (0, 0). This means Ti

is C2 continuous with Ti−1 and Ti+1 everywhere, except (0, 0).
To prove T is C2 at T (0, 0), we just need to prove that, for any t, there exists a 3D plane Pt, such that Pt

passes through V∞, B(t) and H(t), and the intersection curve of T and Pt is C2 at V∞. Note that for any t,
T (0, 0) = T (0, t) = V∞. From Eq. (6), for any t, 0 ≤ t ≤ π/2 and i, 1 ≤ i ≤ n, we have

T r
i (0, t) = Bi(t̂)− V∞, and T rr

i (0, t) = Hi(t̂)− V∞,
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where t̂ = 2t/π.
When n is even, because of the symmetry of B(t) and H(t), we have that V∞ is the midpoint of Bi(t̂) and

Bi+n/2(t̂), and V∞ is the midpoint of Hi(t̂) and Hi+n/2(t̂). As a result, V∞, Bi(t̂), Bi+n/2(t̂), Hi(t̂) and Hi+n/2(t̂)

are on the same plane Pt. Because T
r
i+n/2(0, t) = Bi+n/2(t̂)−V∞ = −T r

i (0, t) and T rr
i+n/2(0, t) = Hi+n/2(t̂)−V∞ =

−T rr
i (0, t), we have that the intersection curve of the plane Pt and the surface T is C2 at V∞.
When n is odd, it can be proven similarly except there are two cases. Again because of the symmetry of

B(t) and H(t), when 0 ≤ t ≤ π/4, we have that V∞ is the midpoint of Bi(t̂) and Bi+(n−1)/2(t̂ + 1/2), and

V∞ is the midpoint of Hi(t̂) and Hi+(n−1)/2(t̂ + 1/2). As a result, V∞, Bi(t̂), Bi+(n−1)/2(t̂ + 1/2), Hi(t̂) and

Hi+(n−1)/2(t̂+1/2) are on the same plane Pt. Because T
r
i+(n−1)/2(0, t+π/4) = Bi+(n−1)/2(t̂+1/2)−V∞ = −T r

i (0, t)

and T rr
i+(n−1)/2(0, t + π/4) = Hi+(n−1)/2(t̂ + 1/2)− V∞ = −T rr

i (0, t), we have that the intersection curve of the

plane Pt and the surface T is C2 at V∞. When π/4 ≤ t ≤ π/2, we know that V∞ is the midpoint of Bi(t̂)
and Bi+(n+1)/2(t̂ − 1/2), and V∞ is the midpoint of Hi(t̂) and Hi+(n+1)/2(t̂ − 1/2). As a result, V∞, Bi(t̂),

Bi+(n+1)/2(t̂ − 1/2), Hi(t̂) and Hi+(n+1)/2(t̂ − 1/2) are on the same plane Pt. Because T r
i+(n+1)/2(0, t − π/4) =

Bi+(n+1)/2(t̂ − 1/2) − V∞ = −T r
i (0, t) and T rr

i+(n+1)/2(0, t − π/4) = Hi+(n+1)/2(t̂ − 1/2) − V∞ = −T rr
i (0, t), we

have that the intersection curve of the plane Pt and the surface T is C2 at V∞. Therefore C2 continuity of T (s, t)
at (0, 0) is proven.

Also from Eq. (6), for any i and any t, we have

T t
i (0, t) = 0, T tt

i (0, t) = 0, and T rt
i (0, t) =

2

π
Bt

i(t̂).

One can easily verify that Bt
i , which is the first derivative of Bi with respect to parameter t, is symmetric relative

to V∞ as well. Note that, when r = 0, Ti(r, t) becomes a point for all t. As a result, when r = 0, the t direction
collapses into a single point. Although for any t, T t

i (0, t) = T tt
i (0, t) = 0, the curvature at Ti(0, 0) is not necessarily

equal to 0 because the partial derivatives at Ti(0, 0) in the r direction (which are T r
i (0, 0) = Bi(0) − V∞ and

T rr
i (0, 0) = Hi(0)−V∞) are not necessarily 0. Hence it is not a flat spot at the extra-ordinary point. To calculate

the normal vector at Ti(0, 0), instead of using T t
i (0, 0), which is 0, we can use T r

i (0, 0) and T r
i (0, π/2).

9 Blending Ti with Si

To construct a C2 patch Qi(r, t) in the ith face around an extra-ordinary vertex V of valance n, we first construct
Ti and Si using the methods given in the previous sections and then blend them together smoothly with a C2

continuous blending function as follows.

Qi(r, t) = r2Si(r, t) + (1− r2)Ti(r, t)

= rW̃M̃nGi + (1− r)W̃M̂nGi

= WMnGi,

(8)

where 0 ≤ r ≤ 1, 0 ≤ t ≤ π/2, W = [Wt, rWt, r
2Wt, r

3Wt, r
4Wt] and Mn is a constant coefficient matrix of size

80× (2n+ 8). Wt is defined in section 4. Mn can be pre-computed for each n involved.
Although other weight functions can be used in the blending process, in our testing, we simply use linear

weights and they give satisfactory results and also simplify the calculation of matrix Mn. If Q(r, t) is defined
to be the union of all the Qi(r, t), then Q(r, t) is C2 everywhere including (0, 0) because all the Si(r, t)’s and all
the Ti(r, t)’s are connected with C2 smoothness. Eq. (8) is the most important result of this paper. It gives
us a direct and explicit way to construct a C2 smooth surface for any extra-ordinary patch. It also gives us a
simple way to calculate the partial derivatives and curvature of an extra-ordinary patch at any parameter point,
including (0, 0), by simply calculating the partial derivatives of W . Therefore Eq. (8) can be effectively used for
surface evaluation, shape analysis, optimization, energy calculation ... etc.

Now we can define a new C2 patch P̂i(u, v) to replace the whole patch Pi(u, v), as follows.

P̂i(u, v) =

{
Pi(u, v) when u2 + v2 >= 1,
Qi(r, t), when u2 + v2 <= 1,

(9)
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where 0 ≤ u, v ≤ 1 and u = r cos t, v = r sin t.
It is clear that P̂i(u, v) is C

2 itself and C2 with its neighboring patches, Note that from Eq. (2) one can see
that Pi(u, v), when u2 + v2 >= 1, can also be represented by a matrix form WM̄nGi, where W is defined in
section 4, M̄n is a constant matrix of size 16× (2n+8) and can be pre-calculated as well. Hence at any parameter

point (u, v), P̂i(u, v) and its derivatives can be calculated explicitly using just simple matrix operations.

10 Proof of Satisfying Convex Hull Property

From Eq. (9) and the definition of Qi(r, t) we can see that we only need to show that Si and Ti satisfy the convex
hull property. From Eq. (3), we can see that Si depends on V∞, Li(1, t), L

r
i (1, t) and Lrr

i (1, t). V∞ and Li(1, t)
are on the surface Pi, hence they are within the convex hull of Gi, i.e., V∞ =

∑
akGi,k such that

∑
ak = 1

and ak ≥ 0 for 1 ≤ k ≤ 2n + 8, Li(1, t) =
∑

ãkGi,k such that
∑

ãk = 1 and ãk ≥ 0 for 1 ≤ k ≤ 2n + 8. Also
because Lr

i (1, t), and Lrr
i (1, t) are derivatives, they do not have absolute locations. If Gi is translated to another

location, Lr
i (1, t), and Lrr

i (1, t) will be the same. Hence we have Lr
i (1, t) =

∑
ākGi,k such that

∑
āk = 0 for

1 ≤ j ≤ 2n+8, Lrr
i (1, t) =

∑
âiGi,k such that

∑
âk = 0 for 1 ≤ k ≤ 2n+8. If we plug them into Eq. (3), we have

Si =
∑2n+8

k=1 Fk(r, t)Gi,k, where Fk(r, t) = (1− r)3ak+ r(r2−3r+3)ãk− r(1− r)(2− r)āk +(1/2)r(1− r)2âk. It is
easy to verify that for any r and t,

∑n
k=1 Fk(r, t) = 1 due to the fact that

∑
ak =

∑
ãk = 1 and

∑
āk =

∑
âk = 0.

Hence to prove Si satisfies the convex hull property, we just need to prove Fk(r, t) is always non-negative.

From Eq. (4), we have Fk(r, t) = W̃(r, t)M̃n,k where M̃n,k is the kth column of the constant matrix M̃n.
Hence we know that Fk(r, t) is a polynomial of r, cos t and sin t defined in a bounded (hence, compact) domain
of [0, 1] × [0, π/2]. As a result there exist extremes for the continuous function Fk(r, t). The extremes are
located either at points where the first partial derivatives are zero or on the domain boundary. Using a scientific
visualization tool, such as Matlab, we can visualize all the values of Fk(r, t) in the domain of [0, 1]× [0, π/2]. We
have done so using Matlab for 3 ≤ n ≤ 1000, and found that for any (r, t) ∈ [0, 1] × [0, π/2], 0 ≤ Fk(r, t) ≤ 1.
Hence, Si satisfies the convex hull property.

From Eq. (6), we can see that Ti depends on V∞, Bi, Hi and Ci. V∞ and Ci are on the surface Pi, hence
they lie inside of the convex hull of Gi and can be represented similarly by a linear combination of Gi with
non-negative coefficients whose sum is one. Bi and Hi are B-spline curves defined by partial derivatives of Pi. All
the derivatives D′

i and D′′

i can be represented similarly by a linear combination of Gi, but with sum of coefficients
to be zero (see Eq. (5)). Recall that in the definition of Bi (or Hi), αn (or β) is chosen in a way such that
when V∞ + αnD

′

k (or V∞ + βnD
′′

k), 1 ≤ k ≤ n, is represented by a linear combination of the vertices of Gi, the
coefficients of the representation are non-negative. Also, we can see that the sum of all the coefficients of the
representation of V∞ +αnD

′

k (or V∞ + βnD
′′

k) is one. Hence for any k ∈ [1, n], both V∞ +αnD
′

k and V∞ + βnD
′′

k

are within the convex hull of Gi. Therefore, Bi and Hi satisfy the convex hull property because they are B-spline
curves defined by control points that are within the convex hull of Gi. As a result, Bi and Hi can be represented
similarly by a linear combination of Gi with non-negative coefficients whose sum is one.

With V∞, Bi, Hi and Ci all being able to be represented by a linear combination of Gi with non-negative
coefficients whose sum is one, using an approach similar to the proof of Si’s convex hull property, one can verify
that Ti is within the convex hull of Gi as well.

11 Test Results

The proposed approach has been implemented in C++ using OpenGL as the supporting graphics system on the
Windows platform. Quite a few examples have been tested with the method described here (see Figure 4). All the
examples have extra-ordinary vertices. With Mn pre-calculated for all different valences of n, the implementation
is actually very easy. Although Mn is a big matrix, the computation needed for each point is not big at all because
MnGi needs to be done only once.

Our method is designed to ensure the resulting C2 surface is similar to the subdivision surface. Figures 4(a-d)
show two cases of comparison between a C2 surface and its corresponding Catmull-Clark subdivision surface
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(a) C2 surface (b) CCSS (c) C2 surface (d) CCSS (e) Mesh

(f) Valance = 13 (g) C2 surface evaluation (h) CCSS surface evaluation (i) C2 surface

(j) Mesh (k) Isophotes on C2 surface (l) Isophotes on CCSS surface (m) CCSS surface

Figure 4: Test examples.

(CCSS). In either case, it is not obvious to tell the difference between the C2 surface and its corresponding CCSS
at all, although some very minor differences indeed exist.

Figures 4(f-h) demonstrate surface evaluation around an extra-ordinary vertex of degree 13, using our approach
and CCSS approach [5]. All the displayed corresponding points are evaluated using the same parameters. Figures
4(j-l) show the isophotes around extra-ordinary points using also our approach and CCSS approach. Ten isophotes
are displayed around each extra-ordinary point and each isophote is corresponding to a circle in parameter space.
The radii for the C2 isophotes are the same as those for the CCSS isophotes. From these figures we can see
that, when a point in the parameter space tends to (0, 0), the points generated by our approach are closer to
the extra-ordinary point than points generated by a subdivision approach. When there are more points closer
to the extra-ordinary point, there is more room for the generated surface to overcome the oscillation problem
around an extra-ordinary point. As a result, our method produces smoother surface in the neighborhood of an
extra-ordinary vertex. Figures 4(e, i, m) demonstrate that our method satisfies the convex hull property. Figure
4(e) is a mesh that some of its edges overlap three times. Note that in such a case, when the surface is evaluated,
the edges stay where they are.
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12 Summary

An approach for the construction of a C2-continuous surface from a mesh of arbitrary topology is presented. The
construction is subdivision surface based, with each extraordinary patch modified so that the resulting surface
is not only C2 continuous everywhere, but has an explicit representation for each extraordinary patch as well.
Implementation is easy because the construction process is patch-based. The explicit representation for an extra-
ordinary patch is a simple matrix form WMG where W is a parameter vector, M is a constant coefficient
matrix and G is the control point vector. Therefore, evaluation of the surface position and computation of
partial derivatives, normal vector, and curvature for any parameter point, including an extra-ordinary point,
is very easy and, consequently, the resulting surface is suitable for operations such as shape analysis, shape
optimization, surface energy minimization ... etc. The construction process includes constraints to ensure the
shape of the resulting C2 surface is very similar to the limit surface generated by Catmull-Clark subdivision. More
importantly, the resulting C2 surface satisfies the convex hull property. With all these properties, we believe the
new approach will have broad applications in computer graphics and geometric design. Our future work will focus
on its applications.
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