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Abstract. A method for performing robust and
error controllable Boolean operations on free-form
solids represented by Catmull-Clark subdivision sur-
faces (CCSSs) is presented. The given objects are
voxelized to make Boolean operations more efficient.
However, different from previous voxelization based
approaches, the final result of the Boolean operations
in our method is represented with a continuous geo-
metric representation. This is achieved by doing the
Boolean operations in the parameter spaces of the
solids, instead of the object space. The 2D parameter
space is recursively subdivided until a keep-or-discard
decision can be made for each resulting subpatch us-
ing results of the voxelization process. This approach
allows us to easily compute a parametric approxima-
tion of the intersection curve and, consequently, build
a continuous geometric representation for the Boolean
operation result. To make the Boolean operation re-
sult more accurate, a secondary local voxelization can
be performed for intersecting subpatches. Because the
voxelization process itself is very fast and robust, the
overall process is fast and robust too. Most impor-
tantly, error of Boolean operation result can be pre-
cisely estimated, hence error control is possible. In
addition, our method can handle any cases of Boolean
operations as long as the given solids are represented
by CCSSs. Therefore there are no special or degener-
ated cases to take care of. Although the new method
is presented for CCSSs, the concept actually works for
any subdivision scheme whose limit surfaces can be
parametrized.
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1 Introduction

Boolean operations are a nature way of constructing
complex solid objects from simpler primitives. For ex-
ample, the Constructive Solid Geometry (CSG) rep-
resentation scheme allows users to define complex 3D
solid objects by hierarchically combining simple geo-
metric primitives using Boolean operations and affine
transformations. However, for many applications CSG
is not the most efficient approach. Another major rep-
resentation scheme used in solid modeling is boundary
representation (B-rep). But for complicated objects,
because higher order B-reps are needed, it is usually
very difficult to find the intersecting curve analytically.
In addition, cares always to be taken to handle spe-
cial cases and degenerated cases [16]. Hence, accurate
Boolean operations are usually not fast, nor robust,
although excellent results have been achieved by some
commercial solid modeling engines.

Voxelization of 3D objects has been studied and
used for 3D object modeling and rendering for a while.
With voxelization, it is actually very simple to get all
the resulting voxels after Boolean operations because
now Boolean operations become simple set operations.
The difficult part is how to represent the resulting ob-
ject properly and accurately when voxelization is used
in the Boolean operation process. Traditionally results
of Boolean operations are represented as sets of vox-
els [24, 25] and special volumetric rendering algorithms
are developed for visualizing Boolean operation results
[14, 27]. The main disadvantage of this approach is
that there is no continuous geometric representation
for the resulting objects. Consequently, the results
of Boolean operations cannot be scaled seamlessly or
smoothly because of the nature of discretization.

In this paper a method for performing robust and
error controllable Boolean operations on free-form
solids represented by Catmull-Clark subdivision sur-
faces (CCSSs) is presented. The given objects are
voxelized to Boolean operations more efficient. How-
ever, the final results of Boolean operations in our



method are still represented with a continuous geo-
metric representation. This is achieve by performing
Boolean operations subpatch by subpatch in 2D pa-
rameter space. Each subpatch is small enough to en-
sure the resulting voxels are either adjacent or over-
lapping. Consequently, connectivity of adjacent voxels
can be easily constructed and the intersection curve
can be easily identified. Because Boolean operations
are performed subpatch by subpatch in 2D parame-
ter space, our method can handle Boolean operations
of any type. There are no special cases or degener-
ated cases to take care of. Therefore our method is
robust. Most importantly, error control is possible in
our method. To make the Boolean results more ac-
curate, according to our error estimation formula, a
secondary local voxelization can be performed for each
pair of intersecting subpatches.

The remaining part of the paper is arranged as fol-
lows. A brief review of background and previous works
related to this one are given in Section 2. A descrip-
tion of our voxelization techniqu is given in Section
3. The process of performing Boolean operations on
solids represented by CCSSs is discussed in Section 4.
Local voxelization technique is presented in Section 5.
Error control is given in Section 6. Implementation is-
sues and test cases are shown in Section 7. Concluding
remarks are given in Section 8.

2 Background & Related Work

2.1 Subdivision Surfaces

Given a control mesh, a subdivision surface is gener-
ated by iteratively refining (subdividing) the control
mesh to form new and finer control meshes. The re-
fined control meshes converge to a limit surface called
a subdivision surface. So a subdivision surface is deter-
mined by the given control mesh and the mesh refining
(subdivision) process. Popular subdivision surfaces in-
clude Catmull-Clark subdivision surfaces (CCSSs) [1],
Doo-Sabin subdivision surfaces [2] and Loop subdivi-
sion surfaces [3].

Subdivision surfaces can model/represent complex
shape of arbitrary topology because there is no limit
on the shape and topology of the control mesh of a sub-
division surface. Subdivision surfaces are intrinsically
discrete. Recently it was also proved that subdivision
surfaces can be prammetrized [4, 5, 6, 7]. Therefore,
subdivision surfaces cover both parametric forms and
discrete forms. Parametric forms are good for design
and representation, discrete forms are good for ma-
chining and tessellation (including FE mesh genera-
tion). Hence, we have a representation scheme that

is good for all graphics and CAD/CAM applications.
Subdivision surfaces by far are the more general sur-
face representation scheme. They include non-uniform
B-spline and NURBS surfaces are special cases [9]. In
this paper we only consider solids represented by CC-
SSs. However, our approach can be used for any sub-
division scheme whose parametrization is available.

2.2 Voxelization

Like 2D pixelization, voxelization of surfaces [10, 11]
is a powerful technique for representing and modeling
complex 3D objects. This is proved by many successful
applications of volume graphics techniques in research
work reported recently. For example, voxelization can
be used for visualization of complex objects or scenes
[12, 14, 27]. It can also be used for measuring integral
properties of solids, such as mass, volume and surface
area. Most importantly, it can be used for intersection
curve calculation and, consequently, Boolean opera-
tions [12, 25]. For example, in [25], a series of Boolean
operations are performed on objects represented by a
CSG tree.

A good voxelization should meet three requirements
in the voxelization process: separability, accuracy, and
minimality [10, 11]. The first requirement demands
analogy between the continuous space and the discrete
space to be preserved and the resulting voxelization
to be not penetratable since the given solid is closed
and continuous. The second requirement ensures that
the resulting voxelization is the most accurate discrete
representation of the given solid according to some
appropriate error metric. The third requirement re-
quires the voxelization does not contain voxels that, if
removed, make no difference in terms of separability
and accuracy. The mathematical definitions of these
requirements can be found in [10, 11].

Note that a voxelization process does not render the
voxels but merely generates a database of the discrete
digitization of the continuous object [10]. Some previ-
ous voxelization methods use quad-trees to store the
voxelization result [26]. This approach can save mem-
ory space but might sacrifice in time when used for ap-
plications such as Boolean operations or intersection
curves determination. Nevertheless, with cheap and
giga-byte memory chips becoming available, storage
requirement is no longer a major issue in the design of
a voxelization algorithm. People care more about the
efficiency of the algorithm. Our new method stores the
voxelization result directly in a Cubic Frame Buffer
[10] for fast operation purpose.



2.3 Boolean Operations on Solids

Performing Boolean operations is a classic problem in
geometric modeling. Many approaches have been re-
ported in the literature, such as [13, 19, 22, 24, 25,
26, 28], to name a few. Currently most solid mod-
elers can support Boolean operations on solids com-
posed of polyhedral models or quadric surfaces (like
spheres, cylinders etc.). Over the last few years, mod-
eling using free-form surfaces has become indispens-
able throughout the commercial CAD/CAM industry.
However, the major bottleneck is in performing robust,
efficient and accurate Boolean operations on free-form
objects. The topology of a surface patch become quite
complicated when a number of Boolean operations are
performed and finding a convenient representation for
these topologies has been a major challenge. As a re-
sult, some solid modelers [13] use polyhedral approxi-
mation to these surfaces and apply Boolean operations
on these approximate polyhedral objects. Although
this approaches seem simple, there are always some
special cases or degenerated cases [16] that are difficult
to take care of. Some modelers use point (or surfel)
based approaches [26] to perform Boolean operations
and quite good results are obtained. However, error
control is difficult in such approaches. Zorin etc. pro-
posed a method [28] to perform approximate Boolean
operations on free-form solids represented by subdivi-
sion surfaces. The main contribution of their method
is the algorithms that are able to generate a control
mesh for a multiresolution surface approximating the
Boolean results.

Most of the recent work in the literature on Boolean
operations of curved models are focused on computing
the surface intersection [15, 17, 18, 20, 21, 23]. How-
ever, the algebraic degree of the resulting curve can
typically be very high (up to 324 for a pair of bicu-
bic Bézier surfaces) [13] and the genus is also non-
zero. Hence it is very difficult to represent the in-
tersection curve analytically and the current methods
are aimed at computing approximations to the inter-
section curve.

3 Voxelization based on Recur-
sive Parameter Space Subdi-
vision

Given a free-form object represented by a CCSS and a
cubic frame buffer of resolution My x My x M3, the goal
is to convert the CCSS represented free-form object
(i.e. continuous geometric representation) into a set
of voxels that best approximates the geometry of the

object. We assume each face of the control mesh is
a quadrilateral and each face has at most one extra-
ordinary vertez (a vertex with a valence different from
4). If this is not the case, simply perform Catmull-
Clark subdivision on the control mesh of the CCSS
twice.

With parametrization techniques for subdivision
surfaces becoming available, it is possible now to
model and represent any continuous but topologi-
cally complex object with an analytical representa-
tion [4, 5, 6, 7]. Given any given parameter space
point (u,v), a surface point S(u,v) corresponding to
this parameter space point can be exactly computed.
Therefore, voxelization does not have to be performed
in 3D object space, as the previous recursive voxeliza-
tion methods did, one can do voxelization in 2D space
by performing recursive subdivision and testing on the
2D parameter space.

We first consider the voxelization process of a sub-
patch, which is a small portion of a patch. Given a
subpatch of S(u,v) defined on [u1,us] X [v1,vs], we
voxelize it by assuming this given subpatch is small
enough (hence, flat enough) so that the voxels gener-
ated from it are the same as the voxels generated using
its four corners:

V1 = S(Ul,’l}l)
V3 = S(UQ7’112)

Vo = S(ua,v1), (1)
V4 == S(ul,'l)g).

3

In general this assumption does not hold. Hence
a test must be performed before the patch or sub-
patch is voxelized. It is easy to see that if the voxels
generated using its four corners are not N-adjacent
(N € {6,18,26}) to each other [10, 11, 12], then there
exist holes between them. In this case, the patch or
subpatch is still not small enough. So we perform a
midpoint subdivision on the corresponding parameter
space by setting

U1 + U9

q V1 + Vo
U2 = ———— an V12 =
2 2

to get four smaller subpatches:

S([Ulz,w] X [U177112])7
S([Uhum] X [1)12;1)2])7

S([Uhum] X [U177112])7
S([Ulz,w] X [1)12;1)2])7

and repeat the testing process on each of the sub-
patches. The process is recursively repeated until all
the subpatches are small enough and can be voxelized
using only their four corners.

The vertices of the resulting subpatches after the re-
cursive parameter space subdivision are then used to
form voxels in the voxelization process to approximate
the limit surface. For example, if the four rectangles in
Figure 1(a) are the parameter spaces of four adjacent
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Figure 1: Basic idea of parameter space based recur-
sive voxelization.

subpatches of S(u,v), and if the rectangles shown in
Figure 1(b) are the parameter spaces of the resulting
subpatches when the above recursive testing process
stops, then 3D points will be evaluated at the 2D pa-
rameter space points marked with small solid circles
to form voxels that approximate the limit surface.

To make things simple, we first normalize the input
mesh to be of dimension [0, M; — 1] x [0, My — 1] X
[0, M3 — 1]. Then for any 2D parameter space point
(u,v) generated from the recursive testing process (see
Fig. 1), direct and exact evaluation is performed to get
its 3D surface position and normal vector at S(u,v).
To get the voxelized coordinates (i, 7, k) from S(u,v)
simply set

|S(u,v).z + 0.5],
|S(u,v).y +0.5], (2)
[S(u,v).z + 0.5].

i
J
k

Once each single point marked in the recursive test-
ing process is voxelized, the process of voxelizing the
given patch is finished. The voxelization result of
this method is guaranteed to satisfy the properties
of separability, accuracy and minimality with respect
to the given N-adjacency connectivity requirement
(N € {6,18,26}) [10, 11, 12].

Since the above process guarantees that a shared
boundary or vertex of patches or subpatches will be
voxelized to the same voxel, we can perform voxeliza-
tion of free-form objects represented by a CCSS on
a patch based approach. One thing that should be
pointed out is, to avoid stack overflow, only small sub-
patches should be fed to the recursive subdivision and
testing process. This is especially true when a high res-
olution cubic frame buffer is given or some polygons
in the given control mesh are very big. Generating
small subpatches is not a problem for a CCSS once
parametrization techniques are available. For exam-
ple, in our implementation, the size of subpatches (in
the parameter space) fed to the recursive testing pro-
cess is % X %, i.e. each patch is divided into 8 x 8 sub-
patches before the voxelization process. In addition,
feeding small size subpatches to the recursive testing

~
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Figure 2: Performing Boolean operations on 2D pa-
rameter space.

process ensures the assumption of our voxelization pro-
cess is satisfied, because the smaller the parameter
space of a subpatch, the flatter the subpatch.

4 Boolean Operations on Solids

Here we only consider Boolean operations performed
on two free-form solids A and B. Boolean operations
performed on more objects can be regarded as a series
of Boolean operations each performed on two objects.
Hence, only two cubic frame buffers are needed, one
for each object. Once voxelization is done, a volume
flooding must be performed to mark the voxels located
inside a given solid. Now there are three types of vox-
els in each cubic frame buffer: (1) inside vozels, (2)
boundary vozels and (3) outside vozels.

Several possible Boolean operations may be spec-
ified by the users. However, the essential process is
is almost the same. Here we illustrate the process by
assuming the given Boolean operation is to find the
intersection of two solid objects.

With voxelization, it is actually quite simple to get
the resulting voxels for a Boolean operation. For ex-
ample, the voxels left after an intersection operation
are those those located inside or on the boundary of
both objects. The difficult part is how to represent the
resulting part properly and accurately. Traditionally
the results of Boolean operations are represented just
with voxels. The main disadvantage of this method is
the results cannot be scaled seemlessly because of the
nature of discretization. In the following, we present
an approach that represents the final result with a con-
tinuous geometric representation.

4.1 Boolean Operations based on Re-
cursive Parameter Space Subdivi-
sion and Voxelization

For a subpatch of S(u, v) of solid A defined on [u1, us] x
[v1, V2], we voxelize it one more time using the method



discussed in Section 3. However, this time we do not
write the voxels into A’s cubic frame buffer, but look
up the voxel values in both solid A and solid B’s cubic
frame buffers. If all the voxel values of this subpatch
in both cubic frame buffer are not outside, then this is
subpatch to keep. Subpatches of this type are called K-
subpatches (subpatches to be kept). (recall that we are
performing an intersection operation.) If the voxel val-
ues of this subpatch are all outside in both A and B’s
cubic frame buffer, then this is a subpatch to discard.
Subpatches of this type are called D-subpatches (sub-
patches to be discarded). Otherwise, i.e., if some of the
voxel values are inside, boundary and some of the voxel
values are outside, then this is a patch with some part
to keep and some part to discard. Subpatches whose
voxel values contain all of inside, boundary and out-
side are called I-subpatches (intersecting subpatches).
For example, the rectangles shown in Fig. 2 (a) are
the parameter spaces of the resulting subpatches when
the recursive voxelization process stops and the dashed
polyline is part of the intersection curve of the two
given solids in this patch’s 2D parameter space. We
can see that subpatch A;AsA4A;3 in Fig. 2 (a) is an
I-subpatch. Note here all the marked adjacent points,
when evaluated and voxelized, will be mapped to ei-
ther the same voxel or adjacent voxels (see Section 3).
For example, there does not exist any voxel between
voxels corresponding to parameter points A; and Aj.
Therefore, even though the intersection curve does not
pass through A; or As, the voxel corresponding to the
intersection point I; will fall into the closest voxel cor-
responding to parameter point A; or Ag. In this case,
it falls into the voxel corresponding to A;.

An intersecting vozel is a voxel whose voxel value is
boundary in both cubic frame buffers. Hence it is very
easy to find all the intersecting voxels, which compose
the intersection curve (but at this moment we do not
know how to connect these intersecting voxels yet).
For example, in Fig. 2(a), parameter points A; and
B7 are intersecting voxels. Once all the intersecting
voxels are identified, a continuous geometric represen-
tation for the resulting solid can be generated. K-
subpatches and D-subpatches are easy to handle. For
example, in Fig. 2(b), A4A5A7As is a K-subpatch,
hence A4AsA;Ag will be output in the tessellation or
rendering process. For an I-subpatch, one can deter-
mine which part of the subpatch to keep by traversing
all the marked points attached to this subpatch For
example, for the subpatch BoB1ByB3B7 in Fig. 2(a),
after a traverse of the marked vertices, it is easy to see
that the part to keep is BoB3B7. Hence BoB3B; will
be used in the tessellation and rendering process. Note
here the intersection point I, after voxelization, maps

to the same voxel as B7. In Fig. 2(b) the shaded part
is the result after performing the Boolean operation
in the 2D parameter space. Once we have the result
of the Boolean operation in 2D parameter space, the
3D result can be easily obtained by directly evaluating
and tessellating these shaded polygons. A connected
intersection curve can be easily constructed as well.
For example, in Figure 2, the intersection curve (in-
side this patch) is A1A4A6B2B7B8.

The above voxelization process and Boolean oper-
ations guarantee that shared boundary or vertex of
patches or subpatches will be chopped, kept or dis-
carded in exactly the same way no matter on which
patch the operation is performed. Therefore, in our
approach, Boolean operations of free-form objects rep-
resented by CCSSs can be performed on the basis of
individual patches.

4.2 Crack Elimination

Due to the fact that adjacent patches might be approx-
imated by quadrilaterals corresponding to subpatches
from different levels of the midpoint subdivision pro-
cess, cracks could occur between adjacent patches or
subpatches. For instance, in Figure 3, the left patch
A1 A5A5Ag is approximated by one quadrilateral but
the right patch is approximated by 7 quadrilaterals.
Consider the boundary shared by the left patch and
the right patch. On the left side, that boundary is
a line segment defined by two vertices : A, and As.
But on the right side, the boundary is a polyline de-
fined by four vertices : As, C4, By, and As. They
would not coincide unless C4 and B4 lie on the line
segment defined by A, and As. But that usually is
not the case. Hence, cracks would appear between the
left patch and the right patch.

Figure 3: Crack elimination.

Fortunately Cracks can be eliminated simply by re-
placing each boundary of a patch or subpatch with
the one that contains all the evaluated points for that
boundary. For example, in Figure 3, all the dot-
ted lines should be replaced with the corresponding

polylines. In particular, boundary AsAjs of patch



A1A5A5Ag should be replaced with the polyline
A>C4B4A;5. As a result, polygon AjAsAsAg is re-
placed with polygon A;A>;C4sBsA5As in the tessel-
lation process. For rendering purpose this is fine be-
cause graphics systems like OpenGL can handle poly-
gons with non-co-planar vertices and polygons with
any number of sides. However, it should be pointed
out that through a simple zigzag technique, triangu-
lation of those polygons is actually a simple and very
fast process.

Cracks could also occur if solids A and B are not
connected properly in the intersecting area. For exam-
ple in Fig. 2 (a), intersection point I; after evaluation
and voxelization falls to voxel corresponding to 2D pa-
rameter point A; of solid A. If I; falls to voxel corre-
sponding to 2D parameter point A; of solid B, then
after evaluation, S4(A;) might not equal Sg(A;) ex-
actly. Hence crack occurs. To eliminate this kind of
cracks, we cannot use the exact 3D positions evaluated
from 2D parameter points for intersection point. In-
stead we use the center of the corresponding voxel as
the intersection point. In this way, solids A and B will
have exactly the same intersection positions and inter-
section curve as well. As a result, solids A and B can
be connected seamlessly. Note that for K-supatches,
their vertices will be evaluated directly from parame-
ter points. Only intersection points of partially kept
I-subpatches are approximated by the centers of their
corresponding voxels.

5 Local Voxelization

The voxelization process presented in Section 3 is
called a global vozelization, because it is performed for
the entire object space. After all the Boolean oper-
ations are performed, a fine scale voxelization, called
a local vozxelization, will also be performed. The goal
of the local voxelization is to improve the accuracy of
the I-subpatches. For example, in Fig. 2(a), A;AsAy4
is used to approximate the area of the I-subpatch
A1 A5A 4 A5 that should be kept. The accuracy of this
approximation depends on the resolution of the global
cubic frame buffer, which is always not high enough
because of limited memory resource. However, we can
do a secondary voxelization, which has lower resolu-
tion, but is only applied to a very small portion of the
object space. As a result high accuracy still can be
achieved at intersecting area.

The process and the approach used for a local vox-
elization are the same as a global voxelization. The
only difference is that they are applied to different size
of the object space. In order to perform local voxeliza-
tion, information about which subpatches of solid A

intersecting with which subpatches of solid B must be
known first. This information is very difficult to obtain
in previous voxelization based methods. Fortunately,
in our method, it can be readily obtained when per-
forming the Boolean operations, as mentioned in Sec-
tion 4.1. If we mark these intersecting subpatches of
solids A and B during the keep-or-discard test process,
we would know exactly which subpatches of solid A
intersect which subpatches of solid B. Once all inter-
secting subpatches are known, local voxelization can
be directly performed for each pair of intersecting sub-
patches. For example, suppose subpatch p; of object
A intersects subpatches ¢; and g2 of object B, then a
local voxelization is performed on these 3 subpatches
only. Their intersection curve is used to replace the in-
tersection curve obtained using the global voxelization
process. The local voxelization process is applied to
every pair of intersecting subpatches of solids A and B.
Consequently, more accurate intersection curve could
be computed. For instance, in Fig. 2(a), the intersec-
tion curve A4A; will be replaced with V{Vy---Vy,
k =10, if V;, i = 1---10 are the new intersecting
voxels in the corresponding local cubic frame buffers
and polygon A1 A>A4 V1V, .-V will be used in the
tessellation and rendering process. Similar to global
voxelization, only two local cubic frame buffers are
needed for local voxelization. The local cubic frame
buffers can be reused for each new pair of intersecting
subpatches. Hence local voxelization does not require
a lot of memory.

6 Error Control

Given an €, the purpose of error control is to make
sure the error of the resulting solid of a Boolean op-
eration is less than e. Because the resulting solid is
approximated by a polygonal mesh, to measure the
difference between a patch (or subpatch) and its cor-
responding quadrilateral, we need to parametrize the
quadrilateral and the patch (or subpatch) first. It is
well known now that any patch or subpatch S(u,v),
(u,v) € [ur,us] X [v1,v2] of a CCSS can be explicitly
parameterized [4, 5, 6, 7]. A quadrilateral with four
corners Vi, Vo, V3 and V4 (see eq. (1) for their def-
initions) can be parameterized as follows:

Q(u,v) = p— (;;2::1 Vi+ o=k Vs)
+ Uv—U] ( ugs—u V4 + u—ui V3)

Vo —U1 N Uz —Uq uUg — U

The difference between the patch (or subpatch) and
its corresponding quadrilateral at (u,v) is defined as

d(u,v) = || Q(u,v) = S(u,v) |I* (3)



If the following equation is satisfied, then the error be-
tween the patch (or subpatch) and the corresponding
quadrilateral is said to be less than e.

Vd (a, v) ++/d (a4, 9) <e (4)

where (4,0) and (@
such that

,U) are 2D parameter space points

{ d(a,v) = max{d(u,v) | (u,v) € [u1,us2] X [v1,v2]}

(Q(a,v - S(a,v)) - (Vi = V3) x (V2= Vy4)) <0

and

{ d(@,v) = max{d(u,v) | (u,v) € [u1,us] X [v1,v2]}
(Q(u,v - 8(u,v)) - (Vi = V3) x (V2 = V4)) >0

From the definitions of (4,v) and (@,v), we can see
that satisfying Eq. (4) means that the subpatch being
tested is located between two quadrilaterals that are e
away from each other.

If eq. (4) is satisfied for every corresponding quadri-
lateral, then the error of the approximation for the en-
tire CCSS surface is said to be smaller than e. It is
known that (4,v) and (@,9) can be explicitly calcu-
lated no matter S is a regular or extraordinary patch
[8]. Hence after the global voxelization process, we
can estimate the error between each resulting subpatch
and the corresponding quadrilateral. For example, if
the rectangles shown in Figure 2(a) are the parameter
spaces of the resulting subpatches when the recursive
global voxelization process stops, then error will be
calculated for each quadrilateral, say AjAsA A5, If
eq. (4) is not satisfied, a midpoint subdivision will be
performed on the 2D parameter subspace correspond-
ing to this subpatch until all the subpatches satisty eq.
(4).

A potential problem for a subpatch that satisfies
eq. (4) is the new polygon generated by the crack
elimination process discussed above might not sat-
isfy the given accuracy requirement any more. Fortu-
nately, even a subpatch with the polyline replacement
in the crack elimination process, we guarantee that
the newly generated polygon is still satisfies eq. (4).
Note that all the evaluated points lie on the limit sur-
face. Hence, for instance, in Fig. 3, points Ay, C4, By
and Aj of patch AsA3A4Aj5 are also points of patch
A1 A>A5Aq. With the test condition in Eq. (4), we
know that a patch or subpatch is flat enough if it is
located between two quadrilaterals that are e away.
Because boundary points A,,Cy4, By and Ajs are on
the limit surface, they must be located between two
quadrilaterals that are € away. So is the polygon
A;A>,CyBsA5Ag. Now the patch (or subpatch) and
its approximating polygon are both located inside two

quadrilaterals that are e away. Hence the overall error
between the patch (or subpatch) and its approximat-
ing polygon is guaranteed to be smaller than . Hence
we can accurately estimate the error caused by the
surface approximation of polygonalization.

Another source that could introduce error in the re-
sult of the Boolean operations is the voxelization pro-
cess. Both the global and the local voxelization can
cause inaccuracy. The kind of error caused by vox-
elization is easy to estimate if the resolutions of cubic
frame buffers are known. For example, if the cubic
frame buffer resolution is R; x Rs x R3 and the ob-
ject space is of size X; x Xo x X3, then we can see
that each voxel is of size ;f— X ;f; X XZ . It is easy to
see the maximal error of voxe117at10n is half the size
of a voxel. If we perform local voxelization for every
pair of intersecting subpatches, then global voxeliza-
tion will not cause any error. Here we can also see
why local voxelization can improve the accuracy dra-
matically. In local voxelization, because the size of the
subpatches being voxelized are very small, even with
a low resolution, the voxel size is still very small.

Therefore the overall error caused by polygonaliza-
tion and voxelization is the sum of the errors caused
by each of them. To make error of the final Boolean
operation results less than the given € everywhere, the
test condition in eq. (4) has to be changed to the
following form:

{ Va (u, v) ++/d (@, o)

size of each voxel

ININA

where (4,0) and (@, ) is defined the same way as in
eq. (4). The first equation in eq. (5) ensures the
patch (or subpatch) and its approximating polygon
are both located inside two quadrilaterals that are €/2
away. The second equation in eq. (5) ensures the error
caused by voxelization is not bigger than ¢/2. Hence
the total error in the whole process is guaranteed to
be less than e.

7 Test Results

The proposed approach has been implemented in C++
using OpenGL as the supporting graphics system on
the Windows platform. Quite a few examples have
been tested with the method described here. All the
examples have extra-ordinary vertices. Some of the
tested results are shown in Figures 4. The resolu-
tion of global voxelization is 512 x 512 x 512 for all
the test examples, and the error for all of them is set
to 1072, The size of each example is normalized to
[0,1] before voxelization and Boolean operations are



(a) Union (b) Difference (c) Union (d) Difference

(e) Union (f) Difference (g) Union

(h) Union (i) Intersection (j) Difference

(k) Union (1) Difference

Figure 4: Boolean Operations Performed on Solids Represented by CCSSes.



performed. Resolutions of the local voxelization pro-
cess depend on error tolerance and the given meshes.
Hence resolution of local voxelization is different for
each of the examples shown in Figures 4. For exam-
ple, resolution of local voxelization used for Figures
4(k) and 4(1) is 8 x 8 x 8, while for Figures 4(g), 4(h),
4(i) and 4(j) the resolution used for local voxelization
is 32 x 32 x 32. Although resolutions used for local
voxelization are different, the overall error is the same
in the final results. From eq. (5) we can see this differ-
ence is smaller than the error tolerance because that
error is caused by voxelization and polygonalization as
well.

In Figure 4, all the Difference and Intersection oper-
ations are performed on solids positioned exactly the
same as in the Union operation so that we can eas-
ily tell if results of the Boolean operations are correct
within the given error tolerance. For example, Fig-
ures 4(j) and 4(g) are results of Difference operation
and Union operation, respectively, on solids placed in
the same positions. Similarly, Figures 4(i) corresponds
to 4(h), 4(b) corresponds to 4(a), 4(d) corresponds to
4(c), 4(f) corresponds to 4(e) and 4(l) corresponds to
4(k).

8 Summary

A new method for performing robust and error con-
trollable Boolean operations on free-form solids rep-
resented with CCSSs is presented. Test results show
that this approach leads to good results even for com-
plicated solids with arbitrary topology.

The new method has several special properties:
First, Boolean operations can be performed on 2D
parameter spaces on the basis of individual patches.
There is no need to take care of special cases or degen-
erated cases. Hence the method is robust. Second, al-
though voxelization is performed to facilitate Boolean
operations, the result of a Boolean operation in our
method are still represented with a continuous geo-
metric representation. Hence our Boolean operation
results can be scaled seamlessly and smoothly. Third,
error of Boolean operation results can be precisely es-
timated. According to the error estimation formula,
a secondary local voxelization can be performed for
intersecting subpatches only. Hence higher accuracy
can be achieved. Finally, although the new method is
presented for CCSSs, the concept actually works for
any subdivision scheme whose limit surfaces can be
parametrized.

Acknowledgement. Data sets of Figures
4(a), 4(b), 4(e) and 4(f) are downloaded from

research.microsoft.com/~hoppe, and data sets
of Figures 4(k) and 4(1) are downloaded from
graphics.cs.uiuc.edu/~garland /research /quadrics.html.
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