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esShuhua Lai and Fuhua (Frank) ChengGraphi
s & Geometri
 Modeling Lab, Department of Computer S
ien
eUniversity of Kentu
ky, Lexington, Kentu
ky 40506-0046Abstra
t. A method for performing robust anderror 
ontrollable Boolean operations on free-formsolids represented by Catmull-Clark subdivision sur-fa
es (CCSSs) is presented. The given obje
ts arevoxelized to make Boolean operations more eÆ
ient.However, di�erent from previous voxelization basedapproa
hes, the �nal result of the Boolean operationsin our method is represented with a 
ontinuous geo-metri
 representation. This is a
hieved by doing theBoolean operations in the parameter spa
es of thesolids, instead of the obje
t spa
e. The 2D parameterspa
e is re
ursively subdivided until a keep-or-dis
ardde
ision 
an be made for ea
h resulting subpat
h us-ing results of the voxelization pro
ess. This approa
hallows us to easily 
ompute a parametri
 approxima-tion of the interse
tion 
urve and, 
onsequently, builda 
ontinuous geometri
 representation for the Booleanoperation result. To make the Boolean operation re-sult more a

urate, a se
ondary lo
al voxelization 
anbe performed for interse
ting subpat
hes. Be
ause thevoxelization pro
ess itself is very fast and robust, theoverall pro
ess is fast and robust too. Most impor-tantly, error of Boolean operation result 
an be pre-
isely estimated, hen
e error 
ontrol is possible. Inaddition, our method 
an handle any 
ases of Booleanoperations as long as the given solids are representedby CCSSs. Therefore there are no spe
ial or degener-ated 
ases to take 
are of. Although the new methodis presented for CCSSs, the 
on
ept a
tually works forany subdivision s
heme whose limit surfa
es 
an beparametrized.CR Categories: I.3.5 [Computer Graphi
s℄: Compu-tational Geometry and Obje
t Modeling - 
urve, sur-fa
e, solid and obje
t representations;Keywords: subdivision surfa
es, Catmull-Clark sub-division surfa
es, voxelization, Boolean operations

1 Introdu
tionBoolean operations are a nature way of 
onstru
ting
omplex solid obje
ts from simpler primitives. For ex-ample, the Constru
tive Solid Geometry (CSG) rep-resentation s
heme allows users to de�ne 
omplex 3Dsolid obje
ts by hierar
hi
ally 
ombining simple geo-metri
 primitives using Boolean operations and aÆnetransformations. However, for many appli
ations CSGis not the most eÆ
ient approa
h. Another major rep-resentation s
heme used in solid modeling is boundaryrepresentation (B-rep). But for 
ompli
ated obje
ts,be
ause higher order B-reps are needed, it is usuallyvery diÆ
ult to �nd the interse
ting 
urve analyti
ally.In addition, 
ares always to be taken to handle spe-
ial 
ases and degenerated 
ases [16℄. Hen
e, a

urateBoolean operations are usually not fast, nor robust,although ex
ellent results have been a
hieved by some
ommer
ial solid modeling engines.Voxelization of 3D obje
ts has been studied andused for 3D obje
t modeling and rendering for a while.With voxelization, it is a
tually very simple to get allthe resulting voxels after Boolean operations be
ausenow Boolean operations be
ome simple set operations.The diÆ
ult part is how to represent the resulting ob-je
t properly and a

urately when voxelization is usedin the Boolean operation pro
ess. Traditionally resultsof Boolean operations are represented as sets of vox-els [24, 25℄ and spe
ial volumetri
 rendering algorithmsare developed for visualizing Boolean operation results[14, 27℄. The main disadvantage of this approa
h isthat there is no 
ontinuous geometri
 representationfor the resulting obje
ts. Consequently, the resultsof Boolean operations 
annot be s
aled seamlessly orsmoothly be
ause of the nature of dis
retization.In this paper a method for performing robust anderror 
ontrollable Boolean operations on free-formsolids represented by Catmull-Clark subdivision sur-fa
es (CCSSs) is presented. The given obje
ts arevoxelized to Boolean operations more eÆ
ient. How-ever, the �nal results of Boolean operations in our1



method are still represented with a 
ontinuous geo-metri
 representation. This is a
hieve by performingBoolean operations subpat
h by subpat
h in 2D pa-rameter spa
e. Ea
h subpat
h is small enough to en-sure the resulting voxels are either adja
ent or over-lapping. Consequently, 
onne
tivity of adja
ent voxels
an be easily 
onstru
ted and the interse
tion 
urve
an be easily identi�ed. Be
ause Boolean operationsare performed subpat
h by subpat
h in 2D parame-ter spa
e, our method 
an handle Boolean operationsof any type. There are no spe
ial 
ases or degener-ated 
ases to take 
are of. Therefore our method isrobust. Most importantly, error 
ontrol is possible inour method. To make the Boolean results more a
-
urate, a

ording to our error estimation formula, ase
ondary lo
al voxelization 
an be performed for ea
hpair of interse
ting subpat
hes.The remaining part of the paper is arranged as fol-lows. A brief review of ba
kground and previous worksrelated to this one are given in Se
tion 2. A des
rip-tion of our voxelization te
hniqu is given in Se
tion3. The pro
ess of performing Boolean operations onsolids represented by CCSSs is dis
ussed in Se
tion 4.Lo
al voxelization te
hnique is presented in Se
tion 5.Error 
ontrol is given in Se
tion 6. Implementation is-sues and test 
ases are shown in Se
tion 7. Con
ludingremarks are given in Se
tion 8.2 Ba
kground & Related Work2.1 Subdivision Surfa
esGiven a 
ontrol mesh, a subdivision surfa
e is gener-ated by iteratively re�ning (subdividing) the 
ontrolmesh to form new and �ner 
ontrol meshes. The re-�ned 
ontrol meshes 
onverge to a limit surfa
e 
alleda subdivision surfa
e. So a subdivision surfa
e is deter-mined by the given 
ontrol mesh and the mesh re�ning(subdivision) pro
ess. Popular subdivision surfa
es in-
lude Catmull-Clark subdivision surfa
es (CCSSs) [1℄,Doo-Sabin subdivision surfa
es [2℄ and Loop subdivi-sion surfa
es [3℄.Subdivision surfa
es 
an model/represent 
omplexshape of arbitrary topology be
ause there is no limiton the shape and topology of the 
ontrol mesh of a sub-division surfa
e. Subdivision surfa
es are intrinsi
allydis
rete. Re
ently it was also proved that subdivisionsurfa
es 
an be prammetrized [4, 5, 6, 7℄. Therefore,subdivision surfa
es 
over both parametri
 forms anddis
rete forms. Parametri
 forms are good for designand representation, dis
rete forms are good for ma-
hining and tessellation (in
luding FE mesh genera-tion). Hen
e, we have a representation s
heme that

is good for all graphi
s and CAD/CAM appli
ations.Subdivision surfa
es by far are the more general sur-fa
e representation s
heme. They in
lude non-uniformB-spline and NURBS surfa
es are spe
ial 
ases [9℄. Inthis paper we only 
onsider solids represented by CC-SSs. However, our approa
h 
an be used for any sub-division s
heme whose parametrization is available.2.2 VoxelizationLike 2D pixelization, voxelization of surfa
es [10, 11℄is a powerful te
hnique for representing and modeling
omplex 3D obje
ts. This is proved by many su

essfulappli
ations of volume graphi
s te
hniques in resear
hwork reported re
ently. For example, voxelization 
anbe used for visualization of 
omplex obje
ts or s
enes[12, 14, 27℄. It 
an also be used for measuring integralproperties of solids, su
h as mass, volume and surfa
earea. Most importantly, it 
an be used for interse
tion
urve 
al
ulation and, 
onsequently, Boolean opera-tions [12, 25℄. For example, in [25℄, a series of Booleanoperations are performed on obje
ts represented by aCSG tree.A good voxelization should meet three requirementsin the voxelization pro
ess: separability, a

ura
y, andminimality [10, 11℄. The �rst requirement demandsanalogy between the 
ontinuous spa
e and the dis
retespa
e to be preserved and the resulting voxelizationto be not penetratable sin
e the given solid is 
losedand 
ontinuous. The se
ond requirement ensures thatthe resulting voxelization is the most a

urate dis
reterepresentation of the given solid a

ording to someappropriate error metri
. The third requirement re-quires the voxelization does not 
ontain voxels that, ifremoved, make no di�eren
e in terms of separabilityand a

ura
y. The mathemati
al de�nitions of theserequirements 
an be found in [10, 11℄.Note that a voxelization pro
ess does not render thevoxels but merely generates a database of the dis
retedigitization of the 
ontinuous obje
t [10℄. Some previ-ous voxelization methods use quad-trees to store thevoxelization result [26℄. This approa
h 
an save mem-ory spa
e but might sa
ri�
e in time when used for ap-pli
ations su
h as Boolean operations or interse
tion
urves determination. Nevertheless, with 
heap andgiga-byte memory 
hips be
oming available, storagerequirement is no longer a major issue in the design ofa voxelization algorithm. People 
are more about theeÆ
ien
y of the algorithm. Our new method stores thevoxelization result dire
tly in a Cubi
 Frame Bu�er[10℄ for fast operation purpose.2



2.3 Boolean Operations on SolidsPerforming Boolean operations is a 
lassi
 problem ingeometri
 modeling. Many approa
hes have been re-ported in the literature, su
h as [13, 19, 22, 24, 25,26, 28℄, to name a few. Currently most solid mod-elers 
an support Boolean operations on solids 
om-posed of polyhedral models or quadri
 surfa
es (likespheres, 
ylinders et
.). Over the last few years, mod-eling using free-form surfa
es has be
ome indispens-able throughout the 
ommer
ial CAD/CAM industry.However, the major bottlene
k is in performing robust,eÆ
ient and a

urate Boolean operations on free-formobje
ts. The topology of a surfa
e pat
h be
ome quite
ompli
ated when a number of Boolean operations areperformed and �nding a 
onvenient representation forthese topologies has been a major 
hallenge. As a re-sult, some solid modelers [13℄ use polyhedral approxi-mation to these surfa
es and apply Boolean operationson these approximate polyhedral obje
ts. Althoughthis approa
hes seem simple, there are always somespe
ial 
ases or degenerated 
ases [16℄ that are diÆ
ultto take 
are of. Some modelers use point (or surfel)based approa
hes [26℄ to perform Boolean operationsand quite good results are obtained. However, error
ontrol is diÆ
ult in su
h approa
hes. Zorin et
. pro-posed a method [28℄ to perform approximate Booleanoperations on free-form solids represented by subdivi-sion surfa
es. The main 
ontribution of their methodis the algorithms that are able to generate a 
ontrolmesh for a multiresolution surfa
e approximating theBoolean results.Most of the re
ent work in the literature on Booleanoperations of 
urved models are fo
used on 
omputingthe surfa
e interse
tion [15, 17, 18, 20, 21, 23℄. How-ever, the algebrai
 degree of the resulting 
urve 
antypi
ally be very high (up to 324 for a pair of bi
u-bi
 B�ezier surfa
es) [13℄ and the genus is also non-zero. Hen
e it is very diÆ
ult to represent the in-terse
tion 
urve analyti
ally and the 
urrent methodsare aimed at 
omputing approximations to the inter-se
tion 
urve.3 Voxelization based on Re
ur-sive Parameter Spa
e Subdi-visionGiven a free-form obje
t represented by a CCSS and a
ubi
 frame bu�er of resolutionM1�M2�M3, the goalis to 
onvert the CCSS represented free-form obje
t(i.e. 
ontinuous geometri
 representation) into a setof voxels that best approximates the geometry of the

obje
t. We assume ea
h fa
e of the 
ontrol mesh isa quadrilateral and ea
h fa
e has at most one extra-ordinary vertex (a vertex with a valen
e di�erent from4). If this is not the 
ase, simply perform Catmull-Clark subdivision on the 
ontrol mesh of the CCSStwi
e.With parametrization te
hniques for subdivisionsurfa
es be
oming available, it is possible now tomodel and represent any 
ontinuous but topologi-
ally 
omplex obje
t with an analyti
al representa-tion [4, 5, 6, 7℄. Given any given parameter spa
epoint (u; v), a surfa
e point S(u; v) 
orresponding tothis parameter spa
e point 
an be exa
tly 
omputed.Therefore, voxelization does not have to be performedin 3D obje
t spa
e, as the previous re
ursive voxeliza-tion methods did, one 
an do voxelization in 2D spa
eby performing re
ursive subdivision and testing on the2D parameter spa
e.We �rst 
onsider the voxelization pro
ess of a sub-pat
h, whi
h is a small portion of a pat
h. Given asubpat
h of S(u; v) de�ned on [u1; u2℄ � [v1; v2℄, wevoxelize it by assuming this given subpat
h is smallenough (hen
e, 
at enough) so that the voxels gener-ated from it are the same as the voxels generated usingits four 
orners:V1 = S(u1; v1); V2 = S(u2; v1);V3 = S(u2; v2); V4 = S(u1; v2): (1)In general this assumption does not hold. Hen
ea test must be performed before the pat
h or sub-pat
h is voxelized. It is easy to see that if the voxelsgenerated using its four 
orners are not N -adja
ent(N 2 f6; 18; 26g) to ea
h other [10, 11, 12℄, then thereexist holes between them. In this 
ase, the pat
h orsubpat
h is still not small enough. So we perform amidpoint subdivision on the 
orresponding parameterspa
e by settingu12 = u1 + u22 and v12 = v1 + v22to get four smaller subpat
hes:S([u1; u12℄� [v1; v12℄); S([u12; u2℄� [v1; v12℄);S([u12; u2℄� [v12; v2℄); S([u1; u12℄� [v12; v2℄);and repeat the testing pro
ess on ea
h of the sub-pat
hes. The pro
ess is re
ursively repeated until allthe subpat
hes are small enough and 
an be voxelizedusing only their four 
orners.The verti
es of the resulting subpat
hes after the re-
ursive parameter spa
e subdivision are then used toform voxels in the voxelization pro
ess to approximatethe limit surfa
e. For example, if the four re
tangles inFigure 1(a) are the parameter spa
es of four adja
ent3
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(b)(a)Figure 1: Basi
 idea of parameter spa
e based re
ur-sive voxelization.subpat
hes of S(u; v), and if the re
tangles shown inFigure 1(b) are the parameter spa
es of the resultingsubpat
hes when the above re
ursive testing pro
essstops, then 3D points will be evaluated at the 2D pa-rameter spa
e points marked with small solid 
ir
lesto form voxels that approximate the limit surfa
e.To make things simple, we �rst normalize the inputmesh to be of dimension [0;M1 � 1℄ � [0;M2 � 1℄ �[0;M3 � 1℄. Then for any 2D parameter spa
e point(u; v) generated from the re
ursive testing pro
ess (seeFig. 1), dire
t and exa
t evaluation is performed to getits 3D surfa
e position and normal ve
tor at S(u; v).To get the voxelized 
oordinates (i; j; k) from S(u; v),simply set i = bS(u; v):x+ 0:5
;j = bS(u; v):y + 0:5
;k = bS(u; v):z + 0:5
: (2)On
e ea
h single point marked in the re
ursive test-ing pro
ess is voxelized, the pro
ess of voxelizing thegiven pat
h is �nished. The voxelization result ofthis method is guaranteed to satisfy the propertiesof separability, a

ura
y and minimality with respe
tto the given N -adja
en
y 
onne
tivity requirement(N 2 f6; 18; 26g) [10, 11, 12℄.Sin
e the above pro
ess guarantees that a sharedboundary or vertex of pat
hes or subpat
hes will bevoxelized to the same voxel, we 
an perform voxeliza-tion of free-form obje
ts represented by a CCSS ona pat
h based approa
h. One thing that should bepointed out is, to avoid sta
k over
ow, only small sub-pat
hes should be fed to the re
ursive subdivision andtesting pro
ess. This is espe
ially true when a high res-olution 
ubi
 frame bu�er is given or some polygonsin the given 
ontrol mesh are very big. Generatingsmall subpat
hes is not a problem for a CCSS on
eparametrization te
hniques are available. For exam-ple, in our implementation, the size of subpat
hes (inthe parameter spa
e) fed to the re
ursive testing pro-
ess is 18 � 18 , i.e. ea
h pat
h is divided into 8� 8 sub-pat
hes before the voxelization pro
ess. In addition,feeding small size subpat
hes to the re
ursive testing
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(b)Figure 2: Performing Boolean operations on 2D pa-rameter spa
e.pro
ess ensures the assumption of our voxelization pro-
ess is satis�ed, be
ause the smaller the parameterspa
e of a subpat
h, the 
atter the subpat
h.4 Boolean Operations on SolidsHere we only 
onsider Boolean operations performedon two free-form solids A and B. Boolean operationsperformed on more obje
ts 
an be regarded as a seriesof Boolean operations ea
h performed on two obje
ts.Hen
e, only two 
ubi
 frame bu�ers are needed, onefor ea
h obje
t. On
e voxelization is done, a volume
ooding must be performed to mark the voxels lo
atedinside a given solid. Now there are three types of vox-els in ea
h 
ubi
 frame bu�er: (1) inside voxels, (2)boundary voxels and (3) outside voxels.Several possible Boolean operations may be spe
-i�ed by the users. However, the essential pro
ess isis almost the same. Here we illustrate the pro
ess byassuming the given Boolean operation is to �nd theinterse
tion of two solid obje
ts.With voxelization, it is a
tually quite simple to getthe resulting voxels for a Boolean operation. For ex-ample, the voxels left after an interse
tion operationare those those lo
ated inside or on the boundary ofboth obje
ts. The diÆ
ult part is how to represent theresulting part properly and a

urately. Traditionallythe results of Boolean operations are represented justwith voxels. The main disadvantage of this method isthe results 
annot be s
aled seemlessly be
ause of thenature of dis
retization. In the following, we presentan approa
h that represents the �nal result with a 
on-tinuous geometri
 representation.4.1 Boolean Operations based on Re-
ursive Parameter Spa
e Subdivi-sion and VoxelizationFor a subpat
h of S(u; v) of solidA de�ned on [u1; u2℄�[v1; v2℄, we voxelize it one more time using the method4



dis
ussed in Se
tion 3. However, this time we do notwrite the voxels into A's 
ubi
 frame bu�er, but lookup the voxel values in both solid A and solid B's 
ubi
frame bu�ers. If all the voxel values of this subpat
hin both 
ubi
 frame bu�er are not outside, then this issubpat
h to keep. Subpat
hes of this type are 
alledK-subpat
hes (subpat
hes to be kept). (re
all that we areperforming an interse
tion operation.) If the voxel val-ues of this subpat
h are all outside in both A and B's
ubi
 frame bu�er, then this is a subpat
h to dis
ard.Subpat
hes of this type are 
alled D-subpat
hes (sub-pat
hes to be dis
arded). Otherwise, i.e., if some of thevoxel values are inside, boundary and some of the voxelvalues are outside, then this is a pat
h with some partto keep and some part to dis
ard. Subpat
hes whosevoxel values 
ontain all of inside, boundary and out-side are 
alled I-subpat
hes (interse
ting subpat
hes).For example, the re
tangles shown in Fig. 2 (a) arethe parameter spa
es of the resulting subpat
hes whenthe re
ursive voxelization pro
ess stops and the dashedpolyline is part of the interse
tion 
urve of the twogiven solids in this pat
h's 2D parameter spa
e. We
an see that subpat
h A1A2A4A3 in Fig. 2 (a) is anI-subpat
h. Note here all the marked adja
ent points,when evaluated and voxelized, will be mapped to ei-ther the same voxel or adja
ent voxels (see Se
tion 3).For example, there does not exist any voxel betweenvoxels 
orresponding to parameter points A1 and A3.Therefore, even though the interse
tion 
urve does notpass throughA1 orA3, the voxel 
orresponding to theinterse
tion point I1 will fall into the 
losest voxel 
or-responding to parameter point A1 or A3. In this 
ase,it falls into the voxel 
orresponding to A1.An interse
ting voxel is a voxel whose voxel value isboundary in both 
ubi
 frame bu�ers. Hen
e it is veryeasy to �nd all the interse
ting voxels, whi
h 
omposethe interse
tion 
urve (but at this moment we do notknow how to 
onne
t these interse
ting voxels yet).For example, in Fig. 2(a), parameter points A1 andB7 are interse
ting voxels. On
e all the interse
tingvoxels are identi�ed, a 
ontinuous geometri
 represen-tation for the resulting solid 
an be generated. K-subpat
hes and D-subpat
hes are easy to handle. Forexample, in Fig. 2(b), A4A5A7A6 is a K-subpat
h,hen
e A4A5A7A6 will be output in the tessellation orrendering pro
ess. For an I-subpat
h, one 
an deter-mine whi
h part of the subpat
h to keep by traversingall the marked points atta
hed to this subpat
h Forexample, for the subpat
h B0B1B2B3B7 in Fig. 2(a),after a traverse of the marked verti
es, it is easy to seethat the part to keep is B2B3B7. Hen
e B2B3B7 willbe used in the tessellation and rendering pro
ess. Notehere the interse
tion point I2, after voxelization, maps

to the same voxel as B7. In Fig. 2(b) the shaded partis the result after performing the Boolean operationin the 2D parameter spa
e. On
e we have the resultof the Boolean operation in 2D parameter spa
e, the3D result 
an be easily obtained by dire
tly evaluatingand tessellating these shaded polygons. A 
onne
tedinterse
tion 
urve 
an be easily 
onstru
ted as well.For example, in Figure 2, the interse
tion 
urve (in-side this pat
h) is A1A4A6B2B7B8.The above voxelization pro
ess and Boolean oper-ations guarantee that shared boundary or vertex ofpat
hes or subpat
hes will be 
hopped, kept or dis-
arded in exa
tly the same way no matter on whi
hpat
h the operation is performed. Therefore, in ourapproa
h, Boolean operations of free-form obje
ts rep-resented by CCSSs 
an be performed on the basis ofindividual pat
hes.4.2 Cra
k EliminationDue to the fa
t that adja
ent pat
hes might be approx-imated by quadrilaterals 
orresponding to subpat
hesfrom di�erent levels of the midpoint subdivision pro-
ess, 
ra
ks 
ould o

ur between adja
ent pat
hes orsubpat
hes. For instan
e, in Figure 3, the left pat
hA1A2A5A6 is approximated by one quadrilateral butthe right pat
h is approximated by 7 quadrilaterals.Consider the boundary shared by the left pat
h andthe right pat
h. On the left side, that boundary isa line segment de�ned by two verti
es : A2 and A5.But on the right side, the boundary is a polyline de-�ned by four verti
es : A2, C4, B4, and A5. Theywould not 
oin
ide unless C4 and B4 lie on the linesegment de�ned by A2 and A5. But that usually isnot the 
ase. Hen
e, 
ra
ks would appear between theleft pat
h and the right pat
h.
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C 5

A 2

CFigure 3: Cra
k elimination.Fortunately Cra
ks 
an be eliminated simply by re-pla
ing ea
h boundary of a pat
h or subpat
h withthe one that 
ontains all the evaluated points for thatboundary. For example, in Figure 3, all the dot-ted lines should be repla
ed with the 
orrespondingpolylines. In parti
ular, boundary A2A5 of pat
h5



A1A2A5A6 should be repla
ed with the polylineA2C4B4A5. As a result, polygon A1A2A5A6 is re-pla
ed with polygon A1A2C4B4A5A6 in the tessel-lation pro
ess. For rendering purpose this is �ne be-
ause graphi
s systems like OpenGL 
an handle poly-gons with non-
o-planar verti
es and polygons withany number of sides. However, it should be pointedout that through a simple zigzag te
hnique, triangu-lation of those polygons is a
tually a simple and veryfast pro
ess.Cra
ks 
ould also o

ur if solids A and B are not
onne
ted properly in the interse
ting area. For exam-ple in Fig. 2 (a), interse
tion point I1 after evaluationand voxelization falls to voxel 
orresponding to 2D pa-rameter point A1 of solid A. If I1 falls to voxel 
orre-sponding to 2D parameter point �A1 of solid B, thenafter evaluation, SA(A1) might not equal SB( �A1) ex-a
tly. Hen
e 
ra
k o

urs. To eliminate this kind of
ra
ks, we 
annot use the exa
t 3D positions evaluatedfrom 2D parameter points for interse
tion point. In-stead we use the 
enter of the 
orresponding voxel asthe interse
tion point. In this way, solids A and B willhave exa
tly the same interse
tion positions and inter-se
tion 
urve as well. As a result, solids A and B 
anbe 
onne
ted seamlessly. Note that for K-supat
hes,their verti
es will be evaluated dire
tly from parame-ter points. Only interse
tion points of partially keptI-subpat
hes are approximated by the 
enters of their
orresponding voxels.5 Lo
al VoxelizationThe voxelization pro
ess presented in Se
tion 3 is
alled a global voxelization, be
ause it is performed forthe entire obje
t spa
e. After all the Boolean oper-ations are performed, a �ne s
ale voxelization, 
alleda lo
al voxelization, will also be performed. The goalof the lo
al voxelization is to improve the a

ura
y ofthe I-subpat
hes. For example, in Fig. 2(a), A1A2A4is used to approximate the area of the I-subpat
hA1A2A4A3 that should be kept. The a

ura
y of thisapproximation depends on the resolution of the global
ubi
 frame bu�er, whi
h is always not high enoughbe
ause of limited memory resour
e. However, we 
ando a se
ondary voxelization, whi
h has lower resolu-tion, but is only applied to a very small portion of theobje
t spa
e. As a result high a

ura
y still 
an bea
hieved at interse
ting area.The pro
ess and the approa
h used for a lo
al vox-elization are the same as a global voxelization. Theonly di�eren
e is that they are applied to di�erent sizeof the obje
t spa
e. In order to perform lo
al voxeliza-tion, information about whi
h subpat
hes of solid A

interse
ting with whi
h subpat
hes of solid B must beknown �rst. This information is very diÆ
ult to obtainin previous voxelization based methods. Fortunately,in our method, it 
an be readily obtained when per-forming the Boolean operations, as mentioned in Se
-tion 4.1. If we mark these interse
ting subpat
hes ofsolids A and B during the keep-or-dis
ard test pro
ess,we would know exa
tly whi
h subpat
hes of solid Ainterse
t whi
h subpat
hes of solid B. On
e all inter-se
ting subpat
hes are known, lo
al voxelization 
anbe dire
tly performed for ea
h pair of interse
ting sub-pat
hes. For example, suppose subpat
h p1 of obje
tA interse
ts subpat
hes q1 and q2 of obje
t B, then alo
al voxelization is performed on these 3 subpat
hesonly. Their interse
tion 
urve is used to repla
e the in-terse
tion 
urve obtained using the global voxelizationpro
ess. The lo
al voxelization pro
ess is applied toevery pair of interse
ting subpat
hes of solids A and B.Consequently, more a

urate interse
tion 
urve 
ouldbe 
omputed. For instan
e, in Fig. 2(a), the interse
-tion 
urve A4A1 will be repla
ed with V1V2 � � �Vk,k = 10, if Vi, i = 1 � � � 10 are the new interse
tingvoxels in the 
orresponding lo
al 
ubi
 frame bu�ersand polygon A1A2A4V1V2 � � �Vk will be used in thetessellation and rendering pro
ess. Similar to globalvoxelization, only two lo
al 
ubi
 frame bu�ers areneeded for lo
al voxelization. The lo
al 
ubi
 framebu�ers 
an be reused for ea
h new pair of interse
tingsubpat
hes. Hen
e lo
al voxelization does not requirea lot of memory.6 Error ControlGiven an �, the purpose of error 
ontrol is to makesure the error of the resulting solid of a Boolean op-eration is less than �. Be
ause the resulting solid isapproximated by a polygonal mesh, to measure thedi�eren
e between a pat
h (or subpat
h) and its 
or-responding quadrilateral, we need to parametrize thequadrilateral and the pat
h (or subpat
h) �rst. It iswell known now that any pat
h or subpat
h S(u; v),(u; v) 2 [u1; u2℄ � [v1; v2℄ of a CCSS 
an be expli
itlyparameterized [4, 5, 6, 7℄. A quadrilateral with four
orners V1, V2, V3 and V4 (see eq. (1) for their def-initions) 
an be parameterized as follows:Q(u; v) = v2�vv2�v1 ( u2�uu2�u1V1 + u�u1u2�u1V2)+ v�v1v2�v1 ( u2�uu2�u1V4 + u�u1u2�u1V3)The di�eren
e between the pat
h (or subpat
h) andits 
orresponding quadrilateral at (u; v) is de�ned asd(u; v) = k Q(u; v)� S(u; v) k2 (3)6



If the following equation is satis�ed, then the error be-tween the pat
h (or subpat
h) and the 
orrespondingquadrilateral is said to be less than �.pd ( �u; �v) +pd ( û; v̂) � � (4)where (û; v̂) and (�u; �v) are 2D parameter spa
e pointssu
h that� d(�u; �v) = maxfd(u; v) j (u; v) 2 [u1; u2℄� [v1; v2℄g(Q(�u; �v � S(�u; �v)) � ((V1 �V3)� (V2 �V4)) � 0and� d(û; v̂) = maxfd(u; v) j (u; v) 2 [u1; u2℄� [v1; v2℄g(Q(�u; �v � S(�u; �v)) � ((V1 �V3)� (V2 �V4)) > 0From the de�nitions of (û; v̂) and (�u; �v), we 
an seethat satisfying Eq. (4) means that the subpat
h beingtested is lo
ated between two quadrilaterals that are �away from ea
h other.If eq. (4) is satis�ed for every 
orresponding quadri-lateral, then the error of the approximation for the en-tire CCSS surfa
e is said to be smaller than �. It isknown that (û; v̂) and (�u; �v) 
an be expli
itly 
al
u-lated no matter S is a regular or extraordinary pat
h[8℄. Hen
e after the global voxelization pro
ess, we
an estimate the error between ea
h resulting subpat
hand the 
orresponding quadrilateral. For example, ifthe re
tangles shown in Figure 2(a) are the parameterspa
es of the resulting subpat
hes when the re
ursiveglobal voxelization pro
ess stops, then error will be
al
ulated for ea
h quadrilateral, say A1A2A4A3. Ifeq. (4) is not satis�ed, a midpoint subdivision will beperformed on the 2D parameter subspa
e 
orrespond-ing to this subpat
h until all the subpat
hes satisfy eq.(4).A potential problem for a subpat
h that satis�eseq. (4) is the new polygon generated by the 
ra
kelimination pro
ess dis
ussed above might not sat-isfy the given a

ura
y requirement any more. Fortu-nately, even a subpat
h with the polyline repla
ementin the 
ra
k elimination pro
ess, we guarantee thatthe newly generated polygon is still satis�es eq. (4).Note that all the evaluated points lie on the limit sur-fa
e. Hen
e, for instan
e, in Fig. 3, points A2;C4;B4and A5 of pat
h A2A3A4A5 are also points of pat
hA1A2A5A6. With the test 
ondition in Eq. (4), weknow that a pat
h or subpat
h is 
at enough if it islo
ated between two quadrilaterals that are � away.Be
ause boundary points A2;C4;B4 and A5 are onthe limit surfa
e, they must be lo
ated between twoquadrilaterals that are � away. So is the polygonA1A2C4B4A5A6. Now the pat
h (or subpat
h) andits approximating polygon are both lo
ated inside two

quadrilaterals that are � away. Hen
e the overall errorbetween the pat
h (or subpat
h) and its approximat-ing polygon is guaranteed to be smaller than �. Hen
ewe 
an a

urately estimate the error 
aused by thesurfa
e approximation of polygonalization.Another sour
e that 
ould introdu
e error in the re-sult of the Boolean operations is the voxelization pro-
ess. Both the global and the lo
al voxelization 
an
ause ina

ura
y. The kind of error 
aused by vox-elization is easy to estimate if the resolutions of 
ubi
frame bu�ers are known. For example, if the 
ubi
frame bu�er resolution is R1 � R2 � R3 and the ob-je
t spa
e is of size X1 � X2 � X3, then we 
an seethat ea
h voxel is of size X1R1 � X2R2 � X2R3 . It is easy tosee the maximal error of voxelization is half the sizeof a voxel. If we perform lo
al voxelization for everypair of interse
ting subpat
hes, then global voxeliza-tion will not 
ause any error. Here we 
an also seewhy lo
al voxelization 
an improve the a

ura
y dra-mati
ally. In lo
al voxelization, be
ause the size of thesubpat
hes being voxelized are very small, even witha low resolution, the voxel size is still very small.Therefore the overall error 
aused by polygonaliza-tion and voxelization is the sum of the errors 
ausedby ea
h of them. To make error of the �nal Booleanoperation results less than the given � everywhere, thetest 
ondition in eq. (4) has to be 
hanged to thefollowing form:� pd ( �u; �v) +pd ( û; v̂) � �=2size of ea
h voxel � � (5)where (û; v̂) and (�u; �v) is de�ned the same way as ineq. (4). The �rst equation in eq. (5) ensures thepat
h (or subpat
h) and its approximating polygonare both lo
ated inside two quadrilaterals that are �=2away. The se
ond equation in eq. (5) ensures the error
aused by voxelization is not bigger than �=2. Hen
ethe total error in the whole pro
ess is guaranteed tobe less than �.7 Test ResultsThe proposed approa
h has been implemented in C++using OpenGL as the supporting graphi
s system onthe Windows platform. Quite a few examples havebeen tested with the method des
ribed here. All theexamples have extra-ordinary verti
es. Some of thetested results are shown in Figures 4. The resolu-tion of global voxelization is 512 � 512 � 512 for allthe test examples, and the error for all of them is setto 10�3. The size of ea
h example is normalized to[0; 1℄ before voxelization and Boolean operations are7



(a) Union (b) Di�eren
e (
) Union (d) Di�eren
e

(e) Union (f) Di�eren
e (g) Union

(h) Union (i) Interse
tion (j) Di�eren
e

(k) Union (l) Di�eren
eFigure 4: Boolean Operations Performed on Solids Represented by CCSSes.8



performed. Resolutions of the lo
al voxelization pro-
ess depend on error toleran
e and the given meshes.Hen
e resolution of lo
al voxelization is di�erent forea
h of the examples shown in Figures 4. For exam-ple, resolution of lo
al voxelization used for Figures4(k) and 4(l) is 8� 8� 8, while for Figures 4(g), 4(h),4(i) and 4(j) the resolution used for lo
al voxelizationis 32 � 32 � 32. Although resolutions used for lo
alvoxelization are di�erent, the overall error is the samein the �nal results. From eq. (5) we 
an see this di�er-en
e is smaller than the error toleran
e be
ause thaterror is 
aused by voxelization and polygonalization aswell.In Figure 4, all the Di�eren
e and Interse
tion oper-ations are performed on solids positioned exa
tly thesame as in the Union operation so that we 
an eas-ily tell if results of the Boolean operations are 
orre
twithin the given error toleran
e. For example, Fig-ures 4(j) and 4(g) are results of Di�eren
e operationand Union operation, respe
tively, on solids pla
ed inthe same positions. Similarly, Figures 4(i) 
orrespondsto 4(h), 4(b) 
orresponds to 4(a), 4(d) 
orresponds to4(
), 4(f) 
orresponds to 4(e) and 4(l) 
orresponds to4(k).8 SummaryA new method for performing robust and error 
on-trollable Boolean operations on free-form solids rep-resented with CCSSs is presented. Test results showthat this approa
h leads to good results even for 
om-pli
ated solids with arbitrary topology.The new method has several spe
ial properties:First, Boolean operations 
an be performed on 2Dparameter spa
es on the basis of individual pat
hes.There is no need to take 
are of spe
ial 
ases or degen-erated 
ases. Hen
e the method is robust. Se
ond, al-though voxelization is performed to fa
ilitate Booleanoperations, the result of a Boolean operation in ourmethod are still represented with a 
ontinuous geo-metri
 representation. Hen
e our Boolean operationresults 
an be s
aled seamlessly and smoothly. Third,error of Boolean operation results 
an be pre
isely es-timated. A

ording to the error estimation formula,a se
ondary lo
al voxelization 
an be performed forinterse
ting subpat
hes only. Hen
e higher a

ura
y
an be a
hieved. Finally, although the new method ispresented for CCSSs, the 
on
ept a
tually works forany subdivision s
heme whose limit surfa
es 
an beparametrized.A
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