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tCurves are basi
 design elements in determiningthe shape and silhouette of an industrial produ
t.Being able to build aestheti
 and attra
tive 
urves
ertainly would in
rease a designed's ability in de-signing good quality 3D shapes. Su
h a 
apabilitydepends on if there are ways/standards for one todetermine if a 
urve is an aestheti
 
urve and, aswell as, to 
reate an aestheti
 
urve.We have found the general equations of aes-theti
 
urves. But these equations are for pla-nar 
urves only. In this paper, we improve thiswork by �rst showing the ne
essary and suÆ-
ient 
ondition for a 
urve to have self-aÆnityand then extending the aestheti
 
urves into 3-dimensional spa
e. The pro
ess of 
omputing aB-spline approximation of an 3D aestheti
 
urveis also shown.Keywords: aestheti
 
urve, spa
ial aestheti

urve, self-aÆnity1 Introdu
tion\Aestheti
 
urves" were �rst introdu
ed byHarada [1℄ as 
urves whose logarithmi
 distribu-tion diagrams of 
urvature (LDDCs) are 
lose to
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Figure 1: Aestheti
 plane 
urves with various �valuesa straight line. Miura et al. [2, 3℄ derived an-alyti
al expressions for 
urves whose LDDCs arestri
tly given by a straight line and 
alled thoseexpressions general equations of aestheti
 
urves.Yoshida and Saito [4℄ further analyzed propertiesof the 
urves represented by the general equa-tions and developed a new method to intera
-tively generate su
h a 
urve by spe
ifying two endpoints, tangent ve
tors at those points, three 
on-trol points and an �: slope of the straight linethat de�nes the LDDC. In this resear
h, we 
allthe 
urves represented by the general equations of



aestheti
 
urves the aestheti
 
urves.Aestheti
 
urves in
lude logarithmi
 (equiangu-lar) 
urves (� = 1), 
lothoid 
urves (� = �1)and involute 
urves (� = 2) as spe
ial 
ases. It ispossible to generate and deform aestheti
 
urveseven if they are represented by integral forms usingtheir unit tangent ve
tors as integrands (� 6= 1; 2).These 
urves are expe
ted to play important rolein pra
ti
al appli
ations. However, the generalequations at this moment 
an be used for plane
urves only, they 
an not be used for 3D spa
e
urves. In this paper, we will �rst show the ne
-essary and suÆ
ient 
ondition for a plane 
urveto have self-aÆnity and then extend the aestheti

urves into 3-dimensional spa
e with guaranteedself-aÆnity. We 
all the derived 
urves aestheti
spa
e 
urves. We will also show how to 
omputea B-spline approximation of an aestheti
 spa
e
urve.2 Aestheti
 plane 
urvesWe will show several important properties of aes-theti
 
urves in this se
tion. Re
all that an aes-theti
 
urve is a 
urve whose LDDC is de�ned bya straight line.2.1 General equations of aestheti

urvesGiven an aestheti
 
urve, we assume ar
 length ofthe 
urve is represented by s and radius of 
ur-vature is represented by �. The horizontal axisof LDDC measures log � and the vertiv
al axismeasures log(ds=d(log �)) = log(� ds=d�). Sin
eLDDC is de�ned by a straight line, there exists a
onstant � su
h that the folloing equation is sat-is�ed: log(�dsd�) = � log �+ C (1)where C is a 
onstant. We 
all this the funda-mental equation of aestheti
 
urves. Eq.(1) 
anbe written as 1���1 dsd� = eC = C0 (2)Hen
e there is some 
onstant 
0 su
h that���1 d�ds = 
0 (3)

Figure 1 shows several planar aestheti
 
urveswith various � values.2.2 Self-aÆnity of plane 
urvesWe de�ne self-aÆnity of a plane 
urve as follows[3℄. Given a plane 
urve, if we 
an regenerate itby removing an arbitrary head portion from the
urve and then s
aling the remaining partg withsome fa
tors in the tangent and normal dire
tionsat some point of the 
urve, then the 
urve is saidto have self-aÆnity.A plane 
urve satisfying Eq.(3) has self-aÆnity[2℄.2.3 Ne
essary and suÆ
ient 
onditionfor self-aÆnityFor a given 
urve C(s) parametrerized by the ar
length parameter s � 0, we assume derivative ofits 
urvature and derivative of its radius of 
ur-vature are both 
ontinuous. In other words, weassume the 
urve has C3 
ontinuity. In addition,we assume the radius of 
urvature �(s) is non-zero.By s
aling the 
urve with di�erent fa
tors inthe tangent and normal dire
tions (aÆne trans-formation of the plane 
urve [3℄) at various pointsof the 
urve, we look for 
ases where the s
aled
urve 
ontains a portion that is 
ongruent to theoriginal 
urve. We therefore reparameterize thegiven 
urve C(s) using a new parameter t = as+bwhere a and b are positive 
onstants as shown inFigure 2.3. To s
ale the 
urve uniformly in thetangent dire
tion is equivalent to relate a pointC(t0 = as0 + b) to another point C(s0) as shownin Figure 2.3. In this relationship the s
aling fa
-tor in the tangent dire
tion ft is given by 1=a.Although a and b are 
onstants, they are relatedto the s
aling fa
tors in the tangent and normaldire
tions ft and fn and they depend on the shapeof the 
urve. Hen
e we 
an not spe
ify them in-dependently.The start point of the 
urve C(t) is given byC(b), the point 
orresponding to s = 0. Hen
eC(t) is a 
urve without a head porition of theorigianl 
urve C(s).The 
ondition for a 
urve to have self-aÆnity
an be des
ribed as follows. For an aribitray 
on-stant b > 0, let a > 0 be a 
onstant determinedby b. Then the following equation is satis�ed for



The original curve (s)C

The curve without head portion C(t)

t=as+b

Figure 2: Corresponden
e between the original
urve and a reparameterized version of the 
urveany s � 0: �(s)�(as+ b) = fn (4)where fn is a 
onstant dependent on b and is as
aling fa
tor in the normal dire
tion. fn is givenby setting s to 0 in the above equation, as follows:fn = �(0)�(b) (5)2.3.1 In 
ase of fn = 1To make the subsequent derivation simpler, we�rst dis
uss the 
ase when fn = 1. From Eq.(4)we have �(s) = �(as+ b) (6)By the lemma proven in the appendix, �(s) turnsout to be a 
onstant and the 
urve is given by anar
 or a straight line (�(s) =1).In the following, fn 6= 1 is assumed. RewriteEq.(4) as �(s)� fn �(as+ b) = 0 (7)Sin
e the radius of 
urvature �(s) is di�erentiable,we haved�(s)ds � a fn d�(t)dt ����t=as+b= d�(s)ds � fnft d�(t)dt ����t=as+b = 0 (8)By substituting 0 for s and rewriting the aboveequation, ft = fn d�(b)dtd�(0)ds (9)

Hen
e, as Eq.(5) is satis�ed, both fn and ft aredetermined uniquely by the values of the radiusof 
urvature and its derivative at the start pointof the 
urve footnoteFrom a = 1=ft, a is alsouniquely determined by b.2.3.2 In 
ase of fn=ft = 1First, for some b > 0, if fn=ft = 1 then from Eq.8 we have d�(s)ds = d�(t)dt ����t=as+b (10)From this equation and the lemma in the ap-pendix, it follows thatd�(s)ds = 
0 (11)for some 
onstant 
0. By integrating the aboveequation, one gets�(s) = 
0 s+ 
1 (12)where 
1 is a 
onstant of integration. Eq.(12) rep-resents the relationship between the radius of 
ur-vature and the ar
 length of the logarithmi
 spiraland the 
urva has a spe
ial self-aÆnity, i.e., self-aÆnity when ft is equal to fn.2.3.3 In 
ase of fn=ft 6= 1Next, 
onsider the 
ase fn=ft 6= 1. Sin
e fn 6= 1,there is some � 6= 1 su
h thatfnft = f1��n (13)Thend�(s)ds = f1��n d�(t)dt ����t=as+b= � �(s)�(as+ b)�1�� d�(t)dt ����t=as+b (14)Hen
e�(s)��1 d�(s)ds = �(as+ b)��1 d�(t)dt ����t=as+b (15)Threfore, if � is independent of b, then by thelemma, we obtain the following equation whi
h isquivalent to Eq.(3)�(s)��1 d�(s)ds = 
0 (16)where 
0 is a 
onstant. By integrating the aboveequation, the �rst and se
ond general equationsare derived [2℄.



2.3.4 Independen
e of � on bIn this subse
tion, we prove that � is independentof b. Here we 
onsider the 
ase where b is smallenough and �b > 0. Let a to be 1+�a or 1��a(�a > 0), depending on and uniquely determinedby �b. We relax the 
ondition that b is positiveand 
onsider the 
ase where b = 0 and let �bbe equal to 0. Then Eq.(4) relates itself. Hen
ea = 1, or �a = 0. Then fn = 1. For the 
urvewithout the portion 
orresponding to the domain0 � s < �b, Eq.(4) is satis�ed and from Eq.(13),there exists � su
h that�(s)�((1 ��a)s+�b) = fn = �fnft �1�� (17)a is a 
ontinuous fun
tion of b and we 
an makethe value of �a smaller without limit if we make�b smaller.In Eq.(4), by repeatedly substituting (1��a)s+�b for s, we havefn = �(s)�((1��a)s+�b)fn = �((1 ��a)s+�b)�((1��a)2 s+�b((1 ��a) + 1))� � �fn = �((1��a)m�1s+ � � �+ 1))�((1 ��a)m s+ � � �+ 1))where � is appropriately sele
ted for the given
urve to satisfy �a > 0. From these equations,�(s)�((1 ��a)m s+�b((1��a)m�1 + � � � + 1)) = fmnHen
e the s
aling fa
tor in the tangent dire
tionfor b = �b((1 � �a)m�1 + � � � + 1) is equal to1=(1��a)m = fmt andfmn =�fmnfmt �1�� (18)Therefore � is equal to that for �b.We will prove by 
ontradi
tion that � is a 
on-stant. From Eq.(13), � 
an be expressed as a
ontinuous fun
tion of b: � = �(b). For someb0 > �b > 0, �0 = �(b0) and we assume that �0is di�erent from � = �(�b). For a small positive�, we furthermore assume thatj�0 � �j > 2� (19)

Sin
e �(b) is a 
ontinuous fun
tion, there existssome Æ su
h that for any b > 0 satisfying jb0�bj <Æ we have j�(b0)� �(b)j < � (20)As �a is small, 1��a > 0 and �b((1��a)m�1+� � �+1)) in
reases monotonously from �b and 
anbe
ome larger than any value by in
reasing m.Hen
e there exists m su
h thatbl = �b((1��a)m�1 + � � � + 1)) < b0< bu = �b((1 ��a)m + � � � + 1)) (21)Sin
e bu � bl = �b(1��a)m, if�b(1��a)m < 2Æ (22)we get jb0 � blj < Æ or jb0 � buj < Æ. Eq.(22)
an be rewritten into 1��a < (2Æ=�b) 1m and �abe
omes smaller if we make �b smaller and thereexists �b satisfying this equation. Hen
e Eq.(20)is satis�ed whi
h 
ontradi
ts (19). Therefore � is
onstant for any b.The results of the above dis
ussion 
an besummed up as follows: a ne
essary and suÆ
ient
ondition for a plane 
uve to have self-aÆnityis that for some 
onstant �, Eq.(16) is satis�ed.When � = 1, Eq.(16) be
omes Eq.(11) and it 
on-tains the 
ase of self-aÆnity.2.4 Self-aÆnity ratio� is the slope of the LDDC and, as dis
ussed inthe previous se
tion, it is related to the s
alingfa
tors in the tangent and normal dire
tions: ftand fn. Therefore, it 
hara
terizes the 
urve. Let
 be the re
ipro
al of �. Then from Eq.(13) wehave, 
 = 1� = log fnlog ft (23)This means fn = f
t .For a fra
tal with self-aÆnity, a way to measureits degree of aÆnity is de�ned as follows [5℄. Whenthe whole �gure is 
onsisted of similar �gures ofnumber 1=b s
aled by 1=a with b = aD, the degreeof aÆnity is given byD = log blog a (24)



Eq.(23) is similar to the above de�nition andEq.(23) 
an be interpreted as that it is ne
essaryto have fn 
urves to �ll up the spa
e in the normaldire
tion if we s
ale the 
urve by 1=ft. 
 
an be in-terpreted as a dimension and we 
all it self-aÆnityratio.3 Extension into 3-dimensionalspa
eThe aestheti
 
urves 
onsidered so far are plane
urves only. We will extend them into 3-dimensional spa
e by using the Frenet-Serret for-mula (see, for example, [6℄).3.1 The Frenet-Serret formulaFor a spa
e 
urve C(s) parameterized by s, letits unit tangent ve
tor be t, unit prin
ipal normalve
tor be n and unit binormal ve
tor be b. Theseve
tors are related by the Frenet-Serret formula asfollows:dC(s)ds = t; dtds = �n;dnds = ��t+ �b; dbds = ��n (25)where � and � are the 
urvature and torsion, re-spe
tively. In the following we de�ne self-aÆnityof a spa
e 
urve. An aestheti
 spa
e 
urve is aspa
e 
urve with self-aÆnity.Given a spa
e 
urve, similar to self-aÆnity ofa plane 
urve, we say the 
urve has self-aÆnityif we 
an regenerate it by removing an arbitraryhead portion from the 
urve and then s
aling theremaining portion with some (di�erent) fa
tors inthe tangent, prin
ipal normal and binormal dire
-tions at some point of the 
urve.Sin
e the 
urvature and torsion, or their re
ipro-
als: the radius of 
urvature and radius of torsion
an be independently spe
i�ed with respe
t to theradius of torsion � = 1=� , we assume an equationsimilar to Eq.(1), as follows, is satis�ed:log(� dsd�) = � log�+ C 0 (26)where � is a 
onstant. Like Eq.(3), we would have���1d�ds = 
1 (27)for some 
onstant 
0. Using arguments similar tothose given in subse
tion 2.3 to show that the ne
-essary and suÆ
ient 
ondition for a plane 
urve to

Figure 3: Examples of the aestheti
 spa
e 
urveshave self-aÆnity is the equation given in Eq.(3),we 
an prove that the ne
essary and suÆ
ient 
on-dition for a spa
e 
urve to have self-aÆnity is theset of equations given in Eqs.(3) and (27)The Frenet-Serret formula 
an be 
onsidered asa set of di�erential equations and an example 
al-
ulated by their numerial integration is shown inFigure 3. The left and right �gures show thesame �ve 
urves from di�erent viewpoints and the
urves drawn at the bottom are identi
al to a loga-rithmi
 spiral whose torsion is always 0 and radiusof 
urvature is given by a linear fun
tion of thear
 length. The other 
urves have the same startpoint and radius of 
urvature as the logarithmi
spiral and their torsion is given by a linear fun
tionof the ar
 length with � = 1. The upper 
urveshave smaller 
oeÆ
ient in the linear fun
tion ofthe ar
 length (larger torsion). For ea
h 
urve,at the start point and end point, and two otherpoints on the 
urve, we draw the tangent, prin-
ipal normal and binormal ve
tors of the movingframe (Frenet frame) as short slim 
yliders.



4 B-spline approximationIt is generally useful to use the evolute of a 
urveas well as the 
urve itself to evaluate the qualityof a 
urve for aestheti
 design [4℄. The radius of
urvature of an aestheti
 
urve 
hanges smoothlyand its evolute is given by another aestheti
 
urvewih smoothly 
hanging 
urvatre. We will use asobje
tive fun
tions 1) position errors for the leastsquares method and 2) position and 
urvature er-rors for the 
onjugate gradient method.4.1 Positional errorsLet C(s) be an aestheti
 
urve and let Cb(t) bea 
ubi
 B-spline approximation of C(s). Cb(t)is 
onstru
ted as follows. We sample C(s) atm uniformly distributed parameter spa
e pointsQi = C(si) and minimize the following obje
tivefun
tion: Rp = m�1Xi=0 jCb(ti)�Qij2 (28)Let the unit interval 0 � t � 1 be the domain ofCb and let P i, i = 0; :::; n; be its 
ontrol points(hen
e the number of segments of the B-spline
urve is n�2). We use mutiple knots for the startand end points to make the start and end pointsidenti
al to the �rst and last 
ontrol points P 0and P n, respe
tively. The parameter value ti ofthe ith sampled point is given by ti = si=l wherel is the total length of the 
urve C(s). The tan-gent ve
tors at the start and end points of C(s)are ts and te, respe
tively. In order to make thepositions and tangent ve
tors of the start and endpoints identi
al to the original 
urve, the following
onditions are imposed. P 0 = C(0), P n = C(l),P 1 = P 0 + �ts, P n�1 = P n � �te.The variables of Eq.(28) are the s
alars �, � andthe x and y 
oordinates of the 
ontrol points P i,i = 2; :::; n� 2. It is possible to solve the problemby the least squares method sin
e the obje
tivefun
tion given by Eq.(28) is a quadrati
 fun
tionof these parameters.4.2 Curvature errorsAs in the previous se
tion, we use the same type of
ubi
 B-spline 
urve for approximation, but min-imize the following obje
tive fun
tion to 
onsider

the errors of 
urvature as well:Rp
 = m�1Xi=0 fjCb(ti)�Qij2+wj	(ti)� �(si)j2g (29)where w is a weight to 
ontrol the signi�
an
e ofthe 
urvature error, 	(ti) is the 
urvature of the B-spline 
urve and �(si) is the 
urvature of the orig-inal 
urve at the 
orrespoinding point. Sin
e 	(t)is given by jdCb(t)=dt�d2Cb(t)=d2tj=jdCb(t)=dtj3,Eq.(29) 
an not be solved by the least squaresmethod. We use one of the numeri
al sear
h meth-ods: the 
onjugate gradient method to minimizethe obje
tive fun
tion. We use �, �, and the 
on-trol points that minimize Eq.(28) as the initial val-ues.4.3 Approximation resultsIn the 
ase of � = 1 (logarithmi
 spiral), Figure4 shows the approximation results by the leastsquares method and Table 1 shows the approxi-mation errors. Table 2 shows the errors by the
onjugate gradient method (w = 1). The numberof sampled points for approximation was 100 andthat for error 
al
ulation was 1000. In the tables,rms means the root-mean square average and theerrors are normalizd by setting the total length to1. In the tables p means position, � stands forradius of 
urvature and e means position of theevolutes. Results of these tables show that errorsof these two methods are 
omparable and it is notne
essary to in
lude errors of 
urvature in the ob-je
tive fun
tion. We 
an obtain good approxima-tion of the 
urve as well as high a

ura
y of itsevolute if we use large enough sampled points andthe 
urve segments. This is be
ause 1) it is possi-ble to sample any number of points on the 
urveand 2) it is possible to obtain a

urate length ofthe aestheti
 
urves, hen
e it is not ne
essary tooptimize ti.5 Con
lusionsIn this resear
h, we have derived ne
essary andsuÆ
ient 
onditions for a plane 
urve and a spa
e
urve to have self-aÆnity and extended the pla-nar aestheti
 
urves into 3-dimensional spa
e withself-aÆnity based on the Frenet-Serret formula
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Figure 4: Approximation and its evoluteTable 1: Least squareseg� 1 3 7rmsp 3:966� 10�3 1:909� 10�4 5:924� 10�6emaxp 5:878� 10�3 4:405� 10�4 2:006� 10�5rms� 6:750� 10�2 1:204� 10�2 1:743� 10�3emax� � 1:660� 10�1 3:653� 10�2 6:559� 10�3rmse 6:911� 10�2 1:219� 10�2 1:747� 10�3emaxe 1:660� 10�1 3:668� 10�2 6:559� 10�3and derived the aestheti
 spa
e 
urve. For a spa
eaestheti
 
urve, the radius of torsion, i.e., the re-
ipro
al of torsion to the power of some 
onstantis given by a linear fun
tion of the ar
 length sim-ilar to the radius of 
urvature. Self-aÆnity of aspa
e aestheti
 
urve is guarnateed.For future work, we are planning on an auto-mati
 
lassi�
ation of 
urves with the followingfun
tions: 1) to determine if the rhythm is sim-ple (monotoni
) or 
omplex (
onsisting of pluralrhythms), 2) to 
al
ulate the slope of the line thatapproximates the LDDC. It seems to us that thereis a lot of possible appli
ations of the general equa-tions of aestheti
 
urves in the �eld of 
omputeraided geometri
 design. For example, it wouldbe possible for one to use the equations to de-form 
urves to 
hange their appearan
e, say, fromsharply bending to loosely bending. Another ex-ample is smoothing for reverse engineering. Even

Table 2: Conjugate gradient (w = 1)seg� 1 3 7rmsp 3:984� 10�3 1:909� 10�4 5:942� 10�6emaxp 6:012� 10�3 4:393� 10�4 2:046� 10�5rms� 6:800� 10�2 1:205� 10�2 1:737� 10�3emax� 1:814� 10�1 3:653� 10�2 6:539� 10�3rmse 6:952� 10�2 1:220� 10�2 1:741� 10�3emaxe 1:814� 10�1 3:668� 10�2 6:539� 10�3if only noisy data of 
urves are available, we 
anstill use the equations as some sort of rulers tosmooth out the noise and yield aestheti
ally highquality 
urves. We will also develop a CAD sys-tem using planar and spa
e aestheti
 
urves.A
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tion f(s) patameterized by ar
 lengths. For an arbitrary 
onstant b > 0, let a > 0 be a
onstant determined by b. With these a and b, ifthe following equation is satis�ed for any s � 0f(a s+ b) = f(s) (30)Then f(s) is a 
onstant fun
tion.Proof: Assume f(s) is not a 
onstant fun
tion.Then there exists some s0 > 0 su
h thatf(s0) 6= f(0) (31)If b = s0. Then for some a0 > 0 we havef(a0 s+ s0) = f(s) (32)Substituting 0 for s in the above equation we getf(s0) = f(0) whi
h 
ontradi
ts Eq.(31). There-fore, f(s) is a 
onstant fun
tion 1.

1The lemma means that for an arbitrary b > 0, a =a(b) > 0, when the given fun
tion is s
aled by a about theorigin and is translated by b, if the fun
tion is 
ongruentwith the original fun
tion, then the funtion is 
onstant.


