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Abstract

Curves are basic design elements in determining
the shape and silhouette of an industrial product.
Being able to build aesthetic and attractive curves
certainly would increase a designed’s ability in de-
signing good quality 3D shapes. Such a capability
depends on if there are ways/standards for one to
determine if a curve is an aesthetic curve and, as
well as, to create an aesthetic curve.

We have found the general equations of aes-
thetic curves. But these equations are for pla-
nar curves only. In this paper, we improve this
work by first showing the necessary and suffi-
cient condition for a curve to have self-affinity
and then extending the aesthetic curves into 3-
dimensional space. The process of computing a
B-spline approximation of an 3D aesthetic curve
is also shown.
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1 Introduction

“Aesthetic curves” were first introduced by
Harada [1] as curves whose logarithmic distribu-

tion diagrams of curvature (LDDCs) are close to
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Figure 1: Aesthetic plane curves with various «
values

a straight line. Miura et al. [2, 3] derived an-
alytical expressions for curves whose LDDCs are
strictly given by a straight line and called those
expressions general equations of aesthetic curves.
Yoshida and Saito [4] further analyzed properties
of the curves represented by the general equa-
tions and developed a new method to interac-
tively generate such a curve by specifying two end
points, tangent vectors at those points, three con-
trol points and an «: slope of the straight line
that defines the LDDC. In this research, we call
the curves represented by the general equations of



aesthetic curves the aesthetic curves.

Aesthetic curves include logarithmic (equiangu-
lar) curves (@ = 1), clothoid curves (¢ = —1)
and involute curves (a = 2) as special cases. It is
possible to generate and deform aesthetic curves
even if they are represented by integral forms using
their unit tangent vectors as integrands (a # 1, 2).
These curves are expected to play important role
in practical applications. However, the general
equations at this moment can be used for plane
curves only, they can not be used for 3D space
curves. In this paper, we will first show the nec-
essary and sufficient condition for a plane curve
to have self-affinity and then extend the aesthetic
curves into 3-dimensional space with guaranteed
self-affinity. We call the derived curves aesthetic
space curves. We will also show how to compute
a B-spline approximation of an aesthetic space
curve.

2 Aesthetic plane curves

We will show several important properties of aes-
thetic curves in this section. Recall that an aes-
thetic curve is a curve whose LDDC is defined by
a straight line.

2.1 General equations of aesthetic

curves

Given an aesthetic curve, we assume arc length of
the curve is represented by s and radius of cur-
vature is represented by p. The horizontal axis
of LDDC measures logp and the vertivcal axis
measures log(ds/d(log p)) = log(pds/dp). Since
LDDC is defined by a straight line, there exists a
constant a such that the folloing equation is sat-
isfied:

ds
log(p——) = alogp+C (1)
dp
where C' is a constant. We call this the funda-
mental equation of aesthetic curves. Eq.(1) can
be written as

1 ds
pafld_p = ec = CO

(2)
Hence there is some constant ¢y such that

paflg —

Lo 3)

Figure 1 shows several planar aesthetic curves
with various o values.

2.2 Self-affinity of plane curves

We define self-affinity of a plane curve as follows
[3]. Given a plane curve, if we can regenerate it
by removing an arbitrary head portion from the
curve and then scaling the remaining partg with
some factors in the tangent and normal directions
at some point of the curve, then the curve is said
to have self-affinity.

A plane curve satisfying Eq.(3) has self-affinity

[2].

2.3 Necessary and sufficient condition
for self-affinity

For a given curve C(s) parametrerized by the arc
length parameter s > 0, we assume derivative of
its curvature and derivative of its radius of cur-
vature are both continuous. In other words, we
assume the curve has C® continuity. In addition,
we assume the radius of curvature p(s) is non-zero.

By scaling the curve with different factors in
the tangent and normal directions (affine trans-
formation of the plane curve [3]) at various points
of the curve, we look for cases where the scaled
curve contains a portion that is congruent to the
original curve. We therefore reparameterize the
given curve C(s) using a new parameter ¢t = as+b
where a and b are positive constants as shown in
Figure 2.3. To scale the curve uniformly in the
tangent direction is equivalent to relate a point
C(tg = asg + b) to another point C(sy) as shown
in Figure 2.3. In this relationship the scaling fac-
tor in the tangent direction f; is given by 1/a.

Although a and b are constants, they are related
to the scaling factors in the tangent and normal
directions f; and f,, and they depend on the shape
of the curve. Hence we can not specify them in-
dependently.

The start point of the curve C(t) is given by
C(b), the point corresponding to s = 0. Hence
C(t) is a curve without a head porition of the
origianl curve C(s).

The condition for a curve to have self-affinity
can be described as follows. For an aribitray con-
stant b > 0, let a > 0 be a constant determined
by b. Then the following equation is satisfied for



The curve without head portion C(t)
t=as+b

The original curve C(s)

Figure 2: Correspondence between the original
curve and a reparameterized version of the curve

any s > 0:

p(s)
p(as +b)
where f, is a constant dependent on b and is a
scaling factor in the normal direction. f, is given
by setting s to 0 in the above equation, as follows:
p(0)
(5)

fn:m

I (4)

2.3.1 In caseof f,=1

To make the subsequent derivation simpler, we
first discuss the case when f, = 1. From Eq.(4)
we have

p(s) = p(as +b) (6)

By the lemma proven in the appendix, p(s) turns
out to be a constant and the curve is given by an
arc or a straight line (p(s) = o0).

In the following, f, # 1 is assumed. Rewrite
Eq.(4) as

p(s) — fnplas +b) =0 (7)

Since the radius of curvature p(s) is differentiable,
we have

dp(s) dp(t)
ds N afn 7 t=as+b
o) fudet)]
- ds ft dt t—as+b 0 (8)

By substituting 0 for s and rewriting the above
equation,

u

dp(b)

_ dt
ft - fn dp(0)
ds

(9)

Hence, as Eq.(5) is satisfied, both f, and f; are
determined uniquely by the values of the radius
of curvature and its derivative at the start point
of the curve footnoteFrom a = 1/f;, a is also
uniquely determined by b.

2.3.2 Incaseof f,/fi=1

First, for some b > 0, if f,/f; = 1 then from Eq.
8 we have
dp(s) _ dp(t)

ds dt t=as+b

(10)

From this equation and the lemma in the ap-
pendix, it follows that

dp(s)
ds

for some constant cg.
equation, one gets

= Cy (11)

By integrating the above

p(s) =cos+a (12)

where ¢; is a constant of integration. Eq.(12) rep-
resents the relationship between the radius of cur-
vature and the arc length of the logarithmic spiral
and the curva has a special self-affinity, i.e., self-
affinity when f; is equal to f,,.

2.3.3 Incaseof f,/fi #1

Next, consider the case f,/f;: # 1. Since f, # 1,
there is some « # 1 such that

fn _ fl-a

E —Jn (13)
Then
dp(s) _ lfozdp_(t)
ds B " dt t=as+b
_ p(s) ' *dp(t)
B {p(as + b) } dt t=as+b (14)
Hence
a—1 dp(s) _ a—1 dp_(t)
p(s) o, —plas+b) 7 (15)

Threfore, if « is independent of b, then by the
lemma, we obtain the following equation which is
quivalent to Eq.(3)

dp(s) _

p(s) 1L ¢

ds
where ¢ is a constant. By integrating the above
equation, the first and second general equations
are derived [2].

(16)



2.3.4 Independence of o on b

In this subsection, we prove that « is independent
of b. Here we consider the case where b is small
enough and Ab > 0. Let a to be 1+ Aa or 1 — Aa
(Aa > 0), depending on and uniquely determined
by Ab. We relax the condition that b is positive
and consider the case where b = 0 and let Ab
be equal to 0. Then Eq.(4) relates itself. Hence
a =1, or Aa = 0. Then f, = 1. For the curve
without the portion corresponding to the domain
0 < s < Ab, Eq.(4) is satisfied and from Eq.(13),
there exists « such that
falC

A I

a is a continuous function of b and we can make
the value of Aa smaller without limit if we make
Ab smaller.

In Eq.(4), by repeatedly substituting (1£Aa)s+
Ab for s, we have

p(s) s
p((1 + Aa)s + Ab) fu= {

5= p(s)

" p((1 £ Aa)s + Ab)

I p((1 £ Aa)s + Ab)

" p((1 £ Aa)? s+ Ab((1 £ Aa) + 1))
5= p((1 £ Aa)™ s+ -+ 1))

p(1£Aa)" s+ + 1))

where + is appropriately selected for the given
curve to satisfy Aa > 0. From these equations,

p(s)
p((1 £ Aa)™s+ Ab((1 £ Aa)™ 1 +--- +1))

= I

Hence the scaling factor in the tangent direction
for b = Ab((1 £ Aa)™ ' + --- + 1) is equal to
1/(1 £ Aa)™ = f{" and

fm }la

n_

¥

Therefore « is equal to that for Ab.

fn' (18)

We will prove by contradiction that « is a con-
stant. From Eq.(13), a can be expressed as a
continuous function of b: a = «a(b). For some
by > Ab > 0, ag = a(by) and we assume that ag
is different from o = a(Ab). For a small positive
¢, we furthermore assume that

ag — o > 2e (19)

Since a(b) is a continuous function, there exists
some ¢ such that for any b > 0 satisfying |by —b| <
0 we have

a(by) — a(b)] < e (20)
As Aa is small, 1+ Aa > 0 and Ab((1+Aa)™ !+
.-+ +1)) increases monotonously from Ab and can

become larger than any value by increasing m.
Hence there exists m such that

b;

Ab((1 £ Aa)™ ' +--- +1)) < by
< by = Ab((1 4 Aa)™ + - +1))(21)

Since b, — by = Ab(1 £ Aa)™, if

Ab(1 + Aa)™ < 26 (22)
we get [bg — by| < § or |by — by < . Eq.(22)
can be rewritten into 1+ Aa < (25/Ab)# and Aa
becomes smaller if we make Ab smaller and there
exists Ab satisfying this equation. Hence Eq.(20)
is satisfied which contradicts (19). Therefore « is
constant for any b.

The results of the above discussion can be
summed up as follows: a necessary and sufficient
condition for a plane cuve to have self-affinity
is that for some constant «, Eq.(16) is satisfied.
When a = 1, Eq.(16) becomes Eq.(11) and it con-
tains the case of self-affinity.

2.4 Self-affinity ratio

a is the slope of the LDDC and, as discussed in
the previous section, it is related to the scaling
factors in the tangent and normal directions: f;
and f,. Therefore, it characterizes the curve. Let
v be the reciprocal of . Then from Eq.(13) we
have,

1 log fn

a log f

(23)

This means f, = f;.

For a fractal with self-affinity, a way to measure
its degree of affinity is defined as follows [5]. When
the whole figure is consisted of similar figures of
number 1/b scaled by 1/a with b = a”, the degree
of affinity is given by

1
p— 1o8b (24)
log a



Eq.(23) is similar to the above definition and
Eq.(23) can be interpreted as that it is necessary
to have f, curves to fill up the space in the normal
direction if we scale the curve by 1/f;. 7 can be in-
terpreted as a dimension and we call it self-affinity
ratio.

3 Extension into 3-dimensional
space

The aesthetic curves considered so far are plane
curves only. We will extend them into 3-
dimensional space by using the Frenet-Serret for-
mula (see, for example, [6]).

3.1 The Frenet-Serret formula

For a space curve C(s) parameterized by s, let
its unit tangent vector be ¢, unit principal normal
vector be n and unit binormal vector be b. These
vectors are related by the Frenet-Serret formula as
follows:

€ — ‘o= (25)
am- et 7h b _ —Tn
ds ’ ds

where k and 7 are the curvature and torsion, re-
spectively. In the following we define self-affinity
of a space curve. An aesthetic space curve is a
space curve with self-affinity.

Given a space curve, similar to self-affinity of
a plane curve, we say the curve has self-affinity
if we can regenerate it by removing an arbitrary
head portion from the curve and then scaling the
remaining portion with some (different) factors in
the tangent, principal normal and binormal direc-
tions at some point of the curve.

Since the curvature and torsion, or their recipro-
cals: the radius of curvature and radius of torsion
can be independently specified with respect to the
radius of torsion u = 1/7, we assume an equation
similar to Eq.(1), as follows, is satisfied:

ds
log(u@) = Blogpu +C' (26)

where (3 is a constant. Like Eq.(3), we would have

d
W = (27)
S

for some constant ¢y. Using arguments similar to
those given in subsection 2.3 to show that the nec-
essary and sufficient condition for a plane curve to

Figure 3: Examples of the aesthetic space curves

have self-affinity is the equation given in Eq.(3),
we can prove that the necessary and sufficient con-
dition for a space curve to have self-affinity is the
set of equations given in Egs.(3) and (27)

The Frenet-Serret formula can be considered as
a set of differential equations and an example cal-
culated by their numerial integration is shown in
Figure 3. The left and right figures show the
same five curves from different viewpoints and the
curves drawn at the bottom are identical to a loga-
rithmic spiral whose torsion is always 0 and radius
of curvature is given by a linear function of the
arc length. The other curves have the same start
point and radius of curvature as the logarithmic
spiral and their torsion is given by a linear function
of the arc length with 8 = 1. The upper curves
have smaller coefficient in the linear function of
the arc length (larger torsion). For each curve,
at the start point and end point, and two other
points on the curve, we draw the tangent, prin-
cipal normal and binormal vectors of the moving
frame (Frenet frame) as short slim cyliders.



4 B-spline approximation

It is generally useful to use the evolute of a curve
as well as the curve itself to evaluate the quality
of a curve for aesthetic design [4]. The radius of
curvature of an aesthetic curve changes smoothly
and its evolute is given by another aesthetic curve
wih smoothly changing curvatre. We will use as
objective functions 1) position errors for the least
squares method and 2) position and curvature er-
rors for the conjugate gradient method.

4.1 Positional errors

Let C(s) be an aesthetic curve and let Cy(t) be
Ci(1)
We sample C(s) at
m uniformly distributed parameter space points
Q,; = C(s;) and minimize the following objective
function:

a cubic B-spline approximation of C(s).
is constructed as follows.

m—1
R, = |Cy(t:) — Qi (28)
7=0

Let the unit interval 0 < ¢ < 1 be the domain of
Cy and let P;, ¢ = 0,...,n, be its control points
(hence the number of segments of the B-spline
curve is n —2). We use mutiple knots for the start
and end points to make the start and end points
identical to the first and last control points Py
and P, respectively. The parameter value t¢; of
the ith sampled point is given by ¢; = s;/l where
[ is the total length of the curve C(s). The tan-
gent vectors at the start and end points of C(s)
are t; and t., respectively. In order to make the
positions and tangent vectors of the start and end
points identical to the original curve, the following
conditions are imposed. Py = C(0), P,, = C(l),
P, =Py +ats, P, | = P, — pt,.

The variables of Eq.(28) are the scalars «, 8 and
the z and y coordinates of the control points P;,
1 =2,...,n — 2. It is possible to solve the problem
by the least squares method since the objective
function given by Eq.(28) is a quadratic function
of these parameters.

4.2 Curvature errors

As in the previous section, we use the same type of
cubic B-spline curve for approximation, but min-
imize the following objective function to consider

the errors of curvature as well:

S (0 (4) - QP

MS

R, =

)

I
=)

+wlW(t;) — K(si) Y (29)
where w is a weight to control the significance of
the curvature error, ¥(¢;) is the curvature of the B-
spline curve and «(s;) is the curvature of the orig-
inal curve at the correspoinding point. Since ¥(t)
is given by |dC(t)/dt xd>Cy(t)/d*t|/|dCy(t)/dt|?,
Eq.(29) can not be solved by the least squares
method. We use one of the numerical search meth-
ods:
the objective function. We use a, 8, and the con-
trol points that minimize Eq.(28) as the initial val-
ues.

the conjugate gradient method to minimize

4.3 Approximation results

In the case of @ = 1 (logarithmic spiral), Figure
4 shows the approximation results by the least
squares method and Table 1 shows the approxi-
Table 2 shows the errors by the
conjugate gradient method (w = 1). The number
of sampled points for approximation was 100 and
that for error calculation was 1000. In the tables,
rms means the root-mean square average and the
errors are normalizd by setting the total length to
1. In the tables p means position, p stands for
radius of curvature and e means position of the
evolutes. Results of these tables show that errors
of these two methods are comparable and it is not
necessary to include errors of curvature in the ob-
jective function. We can obtain good approxima-
tion of the curve as well as high accuracy of its
evolute if we use large enough sampled points and
the curve segments. This is because 1) it is possi-
ble to sample any number of points on the curve
and 2) it is possible to obtain accurate length of
the aesthetic curves, hence it is not necessary to
optimize t;.

mation errors.

5 Conclusions

In this research, we have derived necessary and
sufficient conditions for a plane curve and a space
curve to have self-affinity and extended the pla-
nar aesthetic curves into 3-dimensional space with
self-affinity based on the Frenet-Serret formula



aesthetic curve segment on yz plane

3D curve segment

Table 2: Conjugate gradient (w = 1)

We segment on Xy plane

Figure 4: Approximation and its evolute

Table 1: Least square

seg@ | 1 3 7

rms, | 3.984 x 1073 1.909 x 10~* 5.942 x 106
e | 6.012x 1072  4.393x 107*  2.046 x 107°
rms, | 6.800 x 1072 1.205 x 1072 1.737 x 103
e | 1.814 x 107! 3.653 x 1072  6.539 x 10~°
rms. | 6.952 x 1072 1.220x 1072 1.741 x 1073
emar | 1.814x 1071 3.668 x 1072 6.539 x 1073

seg@ 1 3 7

rms, | 3.966x 1073 1.909 x 10~* 5.924 x 10°°
e | 5.878 x 107  4.405 x 107*  2.006 x 10~°
rms, | 6.750%x 107 1.204 x 102 1.743 x 1073
er*@ | 1.660 x 107" 3.653 x 1072  6.559 x 103
rms. | 6.911x 1072 1.219x 1072  1.747 x 1073
emaz 1.660 x 107! 3.668 x 1072 6.559 x 1073

and derived the aesthetic space curve. For a space
aesthetic curve, the radius of torsion, i.e., the re-
ciprocal of torsion to the power of some constant
is given by a linear function of the arc length sim-
ilar to the radius of curvature. Self-affinity of a
space aesthetic curve is guarnateed.

For future work, we are planning on an auto-
matic classification of curves with the following
functions: 1) to determine if the rhythm is sim-
ple (monotonic) or complex (consisting of plural
rhythms), 2) to calculate the slope of the line that
approximates the LDDC. It seems to us that there
is a lot of possible applications of the general equa-
tions of aesthetic curves in the field of computer
aided geometric design. For example, it would
be possible for one to use the equations to de-
form curves to change their appearance, say, from
sharply bending to loosely bending. Another ex-
ample is smoothing for reverse engineering. Even

if only noisy data of curves are available, we can
still use the equations as some sort of rulers to
smooth out the noise and yield aesthetically high
quality curves. We will also develop a CAD sys-
tem using planar and space aesthetic curves.
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Appendix

A Lemma

Given a function f(s) patameterized by arc length
s. For an arbitrary constant b > 0, let a > 0 be a
constant determined by b. With these a and b, if
the following equation is satisfied for any s > 0

flas+b) = f(s) (30)

Then f(s) is a constant function.
Proof: Assume f(s) is not a constant function.
Then there exists some sy > 0 such that

f(s0) # £(0) (31)
If b = s3. Then for some ay > 0 we have
flaos+s0) = f(s) (32)

Substituting 0 for s in the above equation we get
f(so) = f(0) which contradicts Eq.(31). There-
fore, f(s) is a constant function .

!The lemma means that for an arbitrary b > 0, a =
a(b) > 0, when the given function is scaled by a about the
origin and is translated by b, if the function is congruent
with the original function, then the funtion is constant.



